Show simple item record

hal.structure.identifierDynamic Graphics Project [Toronto] [DGP]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
hal.structure.identifierMelting the frontiers between Light, Shape and Matter [MANAO]
dc.contributor.authorBÉNARD, Pierre
hal.structure.identifierDynamic Graphics Project [Toronto] [DGP]
hal.structure.identifierPixar Animation Studios
hal.structure.identifierAdobe Systems Inc. [Adobe Advanced Technology Labs]
dc.contributor.authorHERTZMANN, Aaron
hal.structure.identifierPixar Animation Studios
dc.contributor.authorKASS, Michael
dc.date.accessioned2023-05-12T10:20:27Z
dc.date.available2023-05-12T10:20:27Z
dc.date.issued2014
dc.identifier.issn0730-0301
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/181074
dc.description.abstractEnThis paper introduces a method for accurately computing the visible contours of a smooth 3D surface for stylization. This is a surprisingly difficult problem, and previous methods are prone to topological errors, such as gaps in the outline. Our approach is to generate, for each viewpoint, a new triangle mesh with contours that are topologically-equivalent and geometrically close to those of the original smooth surface. The contours of the mesh can then be rendered with exact visibility. The core of the approach is Contour-Consistency, a way to prove topological equivalence between the contours of two surfaces. Producing a surface tessellation that satisfies this property is itself challenging; to this end, we introduce a type of triangle that ensures consistency at the contour. We then introduce an iterative mesh generation procedure, based on these ideas. This procedure does not fully guarantee consistency, but errors are not noticeable in our experiments. Our algorithm can operate on any smooth input surface representation; we use Catmull-Clark subdivision surfaces in our implementation. We demonstrate results computing contours of complex 3D objects, on which our method eliminates the contour artifacts of other methods.
dc.language.isoen
dc.publisherAssociation for Computing Machinery
dc.subject.ennon-photorealistic rendering
dc.subject.enline drawing
dc.subject.ensilhouettes
dc.subject.envisibility
dc.subject.engeometry processing
dc.title.enComputing Smooth Surface Contours with Accurate Topology
dc.typeArticle de revue
dc.identifier.doi10.1145/2558307
dc.subject.halInformatique [cs]/Synthèse d'image et réalité virtuelle [cs.GR]
bordeaux.journalACM Transactions on Graphics
bordeaux.volume33
bordeaux.hal.laboratoriesLaboratoire Photonique, Numérique et Nanosciences (LP2N) - UMR 5298*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00924273
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00924273v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=ACM%20Transactions%20on%20Graphics&rft.date=2014&rft.volume=33&rft.issue=2&rft.eissn=0730-0301&rft.issn=0730-0301&rft.au=B%C3%89NARD,%20Pierre&HERTZMANN,%20Aaron&KASS,%20Michael&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record