Computing Smooth Surface Contours with Accurate Topology
BÉNARD, Pierre
Dynamic Graphics Project [Toronto] [DGP]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
Dynamic Graphics Project [Toronto] [DGP]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
HERTZMANN, Aaron
Dynamic Graphics Project [Toronto] [DGP]
Pixar Animation Studios
Adobe Systems Inc. [Adobe Advanced Technology Labs]
Dynamic Graphics Project [Toronto] [DGP]
Pixar Animation Studios
Adobe Systems Inc. [Adobe Advanced Technology Labs]
BÉNARD, Pierre
Dynamic Graphics Project [Toronto] [DGP]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
Dynamic Graphics Project [Toronto] [DGP]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Melting the frontiers between Light, Shape and Matter [MANAO]
HERTZMANN, Aaron
Dynamic Graphics Project [Toronto] [DGP]
Pixar Animation Studios
Adobe Systems Inc. [Adobe Advanced Technology Labs]
< Réduire
Dynamic Graphics Project [Toronto] [DGP]
Pixar Animation Studios
Adobe Systems Inc. [Adobe Advanced Technology Labs]
Langue
en
Article de revue
Ce document a été publié dans
ACM Transactions on Graphics. 2014, vol. 33, n° 2
Association for Computing Machinery
Résumé en anglais
This paper introduces a method for accurately computing the visible contours of a smooth 3D surface for stylization. This is a surprisingly difficult problem, and previous methods are prone to topological errors, such as ...Lire la suite >
This paper introduces a method for accurately computing the visible contours of a smooth 3D surface for stylization. This is a surprisingly difficult problem, and previous methods are prone to topological errors, such as gaps in the outline. Our approach is to generate, for each viewpoint, a new triangle mesh with contours that are topologically-equivalent and geometrically close to those of the original smooth surface. The contours of the mesh can then be rendered with exact visibility. The core of the approach is Contour-Consistency, a way to prove topological equivalence between the contours of two surfaces. Producing a surface tessellation that satisfies this property is itself challenging; to this end, we introduce a type of triangle that ensures consistency at the contour. We then introduce an iterative mesh generation procedure, based on these ideas. This procedure does not fully guarantee consistency, but errors are not noticeable in our experiments. Our algorithm can operate on any smooth input surface representation; we use Catmull-Clark subdivision surfaces in our implementation. We demonstrate results computing contours of complex 3D objects, on which our method eliminates the contour artifacts of other methods.< Réduire
Mots clés en anglais
non-photorealistic rendering
line drawing
silhouettes
visibility
geometry processing
Origine
Importé de halUnités de recherche