Afficher la notice abrégée

hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorHICKSON, Kevin
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorLOISON, Jean-Christophe
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorLARREGARAY, Pascal
hal.structure.identifierInstitut des Sciences Moléculaires [ISM]
dc.contributor.authorBONNET, Laurent
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorWAKELAM, Valentine
dc.date.issued2022
dc.identifier.issn1089-5639
dc.description.abstractEnThe reaction between atomic carbon in its ground electronic state, C(3P), and nitrous oxide, N2O, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50–296 K range using a continuous supersonic flow reactor. C(3P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.8 nm. Additional measurements allowing the major product channels to be elucidated were also performed. On the theoretical side, statistical rate theory was used to calculate low temperature rate constants. These calculations employed the results of new electronic structure calculations of the 3A″ potential energy surface of CNNO and provided a basis to extrapolate the measured rate constants to lower temperatures and pressures. The rate constant was found to increase monotonically as the temperature falls (kC(3P)+N2O (296 K) = (3.4 ± 0.3) × 10–11 cm3 s–1), reaching a value of kC(3P)+N2O (50 K) = (7.9 ± 0.8) × 10–11 cm3 s–1 at 50 K. As current astrochemical models do not include the C + N2O reaction, we tested the influence of this process on interstellar N2O and other related species using a gas-grain model of dense interstellar clouds. These simulations predict that N2O abundances decrease significantly at intermediate times (103 – 105 years) when gas-phase C(3P) abundances are high
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.title.enAn Experimental and Theoretical Investigation of the Gas-Phase C( 3 P) + N 2 O Reaction. Low Temperature Rate Constants and Astrochemical Implications
dc.typeArticle de revue
dc.identifier.doi10.1021/acs.jpca.1c10112
dc.subject.halChimie/Chimie théorique et/ou physique
bordeaux.journalJournal of Physical Chemistry A
bordeaux.page940-950
bordeaux.volume126
bordeaux.issue6
bordeaux.peerReviewedoui
hal.identifierhal-03809728
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03809728v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Physical%20Chemistry%20A&rft.date=2022&rft.volume=126&rft.issue=6&rft.spage=940-950&rft.epage=940-950&rft.eissn=1089-5639&rft.issn=1089-5639&rft.au=HICKSON,%20Kevin&LOISON,%20Jean-Christophe&LARREGARAY,%20Pascal&BONNET,%20Laurent&WAKELAM,%20Valentine&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée