Mostrar el registro sencillo del ítem

dc.contributor.authorCLEMENT, Matthew
hal.structure.identifierLaboratoire d'Astrophysique de Bordeaux [Pessac] [LAB]
dc.contributor.authorRAYMOND, Sean N.
hal.structure.identifierGuy's and St Thomas' Hospital [London]
dc.contributor.authorCHAMBERS, John
dc.date.issued2021-12-13
dc.identifier.issn2041-8205
dc.description.abstractEnAbstract In spite of substantial advancements in simulating planet formation, the planet Mercury’s diminutive mass and isolated orbit and the absence of planets with shorter orbital periods in the solar system continue to befuddle numerical accretion models. Recent studies have shown that if massive embryos (or even giant planet cores) formed early in the innermost parts of the Sun’s gaseous disk, they would have migrated outward. This migration may have reshaped the surface density profile of terrestrial planet-forming material and generated conditions favorable to the formation of Mercury-like planets. Here we continue to develop this model with an updated suite of numerical simulations. We favor a scenario where Earth’s and Venus’s progenitor nuclei form closer to the Sun and subsequently sculpt the Mercury-forming region by migrating toward their modern orbits. This rapid formation of ∼0.5 M ⊕ cores at ∼0.1–0.5 au is consistent with modern high-resolution simulations of planetesimal accretion. In successful realizations, Earth and Venus accrete mostly dry, enstatite chondrite–like material as they migrate, thus providing a simple explanation for the masses of all four terrestrial planets, the inferred isotopic differences between Earth and Mars, and Mercury’s isolated orbit. Furthermore, our models predict that Venus’s composition should be similar to the Earth’s and possibly derived from a larger fraction of dry material. Conversely, Mercury analogs in our simulations attain a range of final compositions.
dc.language.isoen
dc.publisherBristol : IOP Publishing
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enMercury as the Relic of Earth and Venus Outward Migration
dc.typeArticle de revue
dc.identifier.doi10.3847/2041-8213/ac3e6d
dc.subject.halPhysique [physics]/Astrophysique [astro-ph]/Planétologie et astrophysique de la terre [astro-ph.EP]
dc.identifier.arxiv2112.00044
bordeaux.journalThe Astrophysical journal letters
bordeaux.pageL16
bordeaux.volume923
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-03879024
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03879024v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=The%20Astrophysical%20journal%20letters&rft.date=2021-12-13&rft.volume=923&rft.issue=1&rft.spage=L16&rft.epage=L16&rft.eissn=2041-8205&rft.issn=2041-8205&rft.au=CLEMENT,%20Matthew&RAYMOND,%20Sean%20N.&CHAMBERS,%20John&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem