Composite Mn-Co electrode materials for supercapacitors: Why the precursor’s morphology matters!
INVERNIZZI, Ronan
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
LEMOINE, Alexia
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
MADEC, Lénaïc
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Voir plus >
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
INVERNIZZI, Ronan
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
LEMOINE, Alexia
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
MADEC, Lénaïc
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
WEILL, François
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
TANG, Céline
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Recherche de Chimie Paris [IRCP]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Recherche de Chimie Paris [IRCP]
GIAUME, Domitille
Institut de Recherche de Chimie Paris [IRCP]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut de Recherche de Chimie Paris [IRCP]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
BARAILLE, Isabelle
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
TABERNA, P.-L.
Centre interuniversitaire de recherche et d'ingénierie des matériaux [CIRIMAT]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Centre interuniversitaire de recherche et d'ingénierie des matériaux [CIRIMAT]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
FLAHAUT, Delphine
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux [IPREM]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
OLCHOWKA, Jacob
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
GUERLOU-DEMOURGUES, Liliane
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
< Réduire
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Réseau sur le stockage électrochimique de l'énergie [RS2E]
Advanced Lithium Energy Storage Systems - ALISTORE-ERI [ALISTORE-ERI]
Langue
en
Article de revue
Ce document a été publié dans
Nanoscale Advances. 2022, vol. 4, n° 23, p. 5089-5101
RSC
Résumé en anglais
In the energy storage field, an electrode material must possess both good ionic and electronic conductivities to perform well, especially when high power is needed. In this context, the development of composite electrode ...Lire la suite >
In the energy storage field, an electrode material must possess both good ionic and electronic conductivities to perform well, especially when high power is needed. In this context, the development of composite electrode materials combining an electrochemically active and good ionic conductor phase with an electronic conductor appears as a perfectly adapted approach to generate a synergetic effect and optimize the energy storage performance. In this work, three layered MnO2 phases with various morphologies (veals, nanoplatelets and microplatelets) were associated with electronic conductor cobalt oxyhydroxides with different platelet sizes (~20 nm vs 70 nm wide), to synthesize 6 different composites by exfoliation and restacking process. The influence of precursors’ morphology on the distribution between the Mn and Co objects within the composites was carefully investigated and correlated to the electrochemical performance of the final restacked material. Overall, the best performing restacked composite was obtained by combining MnO2 possessing a veal morphology with the smallest cobalt oxyhydroxide nanoplatelets, leading to the most homogeneous distribution of the Mn and Co objects at the nanoscale. More generally, the aim of this work is to understand how the size and morphology of the precursors building blocks influence their distribution homogeneity within the final composite and to find the most compatible building blocks to reach a homogenous distribution at nanoscale.< Réduire
Project ANR
Laboratory of excellency for electrochemical energy storage - ANR-10-LABX-0076
Origine
Importé de halUnités de recherche