Show simple item record

hal.structure.identifierCentre de droit comparé du travail et de la sécurité sociale [COMPTRASEC]
dc.contributor.authorPETIT, Francois
hal.structure.identifierSorbonne Université [SU]
dc.contributor.authorSCHAPIRA, Pierre
dc.description.abstractEnGiven a topological space $X$, a thickening kernel is a monoidal presheaf on $(\mathbb{R}_{\geq0},+)$ with values in the monoidal category of derived kernels on $X$. A bi-thickening kernel is defined on $(\mathbb{R},+)$. To such a thickening kernel, one naturally associates an interleaving distance on the derived category of sheaves on $X$. We prove that a thickening kernel exists and is unique as soon as it is defined on an interval containing $0$, allowing us to construct (bi-)thickenings in two different situations. First, when $X$ is a ``good'' metric space, starting with small usual thickenings of the diagonal. The associated interleaving distance satisfies the stability property and Lipschitz kernels give rise to Lipschitz maps. Second, by using [GKS12], when $X$ is a manifold and one is given a non-positive Hamiltonian isotopy on the cotangent bundle. In case $X$ is a complete Riemannian manifold having a strictly positive convexity radius, we prove that it is a good metric space and that the two bi-thickening kernels of the diagonal, one associated with the distance, the other with the geodesic flow, coincide.
dc.language.isoen
dc.title.enThickening of the diagonal and interleaving distance
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]
dc.identifier.arxiv2006.13150
hal.identifierhal-03839986
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03839986v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PETIT,%20Francois&SCHAPIRA,%20Pierre&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record