Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorVERIT, Isabel
dc.contributor.authorGEMINI, Laura
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorPRETERRE, Julie
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorPFIRMANN, Pierre
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorBAKIS, Hugo
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorFRICAIN, Jean-Christophe
dc.contributor.authorKLING, Rainer
hal.structure.identifierBioingénierie tissulaire [BIOTIS]
dc.contributor.authorRIGOTHIER, Claire
dc.date.accessioned2023-04-06T16:31:35Z
dc.date.available2023-04-06T16:31:35Z
dc.date.issued2022-01
dc.identifier.issn1422-0067en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172865
dc.description.abstractEnTo face the increasing demand for organ transplantation, currently the development of tissue engineering appears as the best opportunity to effectively regenerate functional tissues and organs. However, these approaches still face the lack of an efficient method to produce an efficient vascularization system. To answer these issues, the formation of an intra-volume channel within a three-dimensional, scaffold free, mature, and cell-covered collagen microfibre is here investigated through laser-induced cavitation. An intra-volume channel was formed upon irradiation with a near-infrared, femtosecond laser beam, focused with a high numerical aperture lens. The laser beam directly crossed the surface of a dense and living-cell bilayer and was focused behind the bilayer to induce channel formation in the hydrogel core while preserving the cell bilayer. Channel formation was assessed through confocal microscopy. Channel generation inside the hydrogel core was enhanced by the formation of voluminous cavitation bubbles with a lifetime longer than 30 s, which also improved intra-volume channel durability. Twenty-four hours after laser processing, cellular viability dropped due to a lack of sufficient hydration for processing longer than 10 min. However, the processing automation could drastically reduce the cellular mortality, this way enabling the formation of hollowed microfibres with a high density of living-cell outer bilayer.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.encell-laden microfibre
dc.subject.enfemtosecond laser
dc.subject.entissue engineering
dc.subject.envascularization
dc.title.enVascularization of Cell-Laden Microfibres by Femtosecond Laser Processing
dc.title.alternativeInt. J. Mol. Sci.en_US
dc.typeArticle de revueen_US
dc.identifier.doi10.3390/ijms23126636en_US
dc.subject.halSciences du Vivant [q-bio]/Médecine humaine et pathologieen_US
bordeaux.journalInternational journal of molecular sciencesen_US
bordeaux.volume23en_US
bordeaux.hal.laboratoriesBioingénierie Tissulaire (BioTis) - U1026en_US
bordeaux.issue12en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionCHU de Bordeauxen_US
bordeaux.institutionInstitut Bergoniéen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04061439
hal.version1
hal.date.transferred2023-04-06T16:31:43Z
hal.exporttrue
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.date=2022-01&rft.volume=23&rft.issue=12&rft.eissn=1422-0067&rft.issn=1422-0067&rft.au=VERIT,%20Isabel&GEMINI,%20Laura&PRETERRE,%20Julie&PFIRMANN,%20Pierre&BAKIS,%20Hugo&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée