Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorCALTAGIRONE, Jean-Paul
dc.date.accessioned2023-03-20T09:57:03Z
dc.date.available2023-03-20T09:57:03Z
dc.date.issued2022-10-11
dc.identifier.issn1873-7234en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172371
dc.description.abstractEnThe physical models and numerical methodologies of Computational Fluid Dynamics (CFD) arehistorically linked to the concept of continuous medium and to analysis where continuity, derivation and integration are defined as limits at a point. The first consequence is the need to extend these notions in a multidimensional space by establishing a global inertial frame of reference in order to project the variables there. In recent decades, the emergence of methodologies based on differential geometry or exterior calculusb has changed the point of view by starting with the creation of entangled polygonal and polyhedral structures where the variables are located. Mimetic methods and Discrete Exterior Calculus, notably, have intrinsic conservation properties which make them very efficient for solving fluid dynamics equations. The natural extension of this discrete vision relates to the derivation of the equations of mechanics by abandoning the notion of continuous medium. The Galilean frame of reference is replaced by a local frame of reference composed of an oriented segment where the acceleration of the material medium or of a particle is defined. The extension to a higher dimensional space is carried from cause to effect, from one local structure to another. The conservation of acceleration over a segment and the Helmholtz–Hodge decomposition are two essential principles adopted for the derivation of a discrete law of motion. As the fields covered by CFD are increasingly broad, it is natural to return to the deepermeaning of physical phenomena to try a new research or new path which would preserve the properties of current formulations.
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enConservation of acceleration
dc.subject.enNavier–Stokes equations
dc.subject.enMimetic methods
dc.subject.enDiscrete exterior calculus
dc.subject.enDiscrete mechanics
dc.subject.enHelmholtz–Hodge decomposition.
dc.title.enEvolution of CFD numerical methods and physical models towards a full discrete approach
dc.typeArticle de revueen_US
dc.identifier.doi10.5802/crmeca.131en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComptes Rendus. Mécaniqueen_US
bordeaux.page1-10en_US
bordeaux.volume350en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.issueS1en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04037123
hal.version1
hal.date.transferred2023-03-20T09:57:05Z
hal.exporttrue
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Comptes%20Rendus.%20M%C3%A9canique&rft.date=2022-10-11&rft.volume=350&rft.issue=S1&rft.spage=1-10&rft.epage=1-10&rft.eissn=1873-7234&rft.issn=1873-7234&rft.au=CALTAGIRONE,%20Jean-Paul&rft.genre=article


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record