Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorLI, Minghui
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorAZAIEZ, Mejdi
dc.contributor.authorXU, Chuanju
dc.date.accessioned2023-03-20T09:23:17Z
dc.date.available2023-03-20T09:23:17Z
dc.date.issued2022-03-01
dc.identifier.issn0898-1221en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172364
dc.description.abstractEnIn this paper, we propose and analyze a first-order and a second-order time-stepping schemes for the anisotropic phase-field dendritic crystal growth model. The proposed schemes are based on an auxiliary variable approach for the Allen-Cahn equation and delicate treatment of the terms coupling the Allen-Cahn equation and temperature equation. The idea of the former is to introduce suitable auxiliary variables to facilitate construction of high order stable schemes for a large class of gradient flows. We propose a new technique to treat the coupling terms involved in the crystal growth model, and introduce suitable stabilization terms to result in totally decoupled schemes, which satisfy a discrete energy law without affecting the convergence order. A delicate implementation demonstrates that the proposed schemes can be realized in a very efficient way. That is, it only requires solving four linear elliptic equations and a simple algebraic equation at each time step. A detailed comparison with existing schemes is given, and the advantage of the new schemes is emphasized. As far as we know this is the first second-order scheme that is totally decoupled, linear, unconditionally stable for the dendritic crystal growth model with variable mobility parameter.
dc.language.isoENen_US
dc.subject.enDendritic crystal growth
dc.subject.enPhase-field
dc.subject.enTime-stepping schemes
dc.subject.enUnconditional stability
dc.title.enNew efficient time-stepping schemes for the anisotropic phase-field dendritic crystal growth model
dc.title.alternativeComputers & Mathematics with Applicationsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.camwa.2022.01.017en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalComputers & Mathematics with Applicationsen_US
bordeaux.page204-215en_US
bordeaux.volume109en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.identifierhal-04037009
hal.version1
hal.date.transferred2023-03-20T09:23:20Z
hal.exporttrue
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computers%20&%20Mathematics%20with%20Applications&rft.date=2022-03-01&rft.volume=109&rft.spage=204-215&rft.epage=204-215&rft.eissn=0898-1221&rft.issn=0898-1221&rft.au=LI,%20Minghui&AZAIEZ,%20Mejdi&XU,%20Chuanju&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée