Afficher la notice abrégée

dc.rights.licenseopenen_US
dc.contributor.authorSÁNCHEZ-VARGAS, J.
dc.contributor.authorVALDÉS-PARADA, F. J.
hal.structure.identifierInstitut de Mécanique et d'Ingénierie [I2M]
dc.contributor.authorLASSEUX, D.
dc.date.accessioned2023-02-21T10:41:56Z
dc.date.available2023-02-21T10:41:56Z
dc.date.issued2022-08-01
dc.identifier.issn0377-0257en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/172016
dc.description.abstractEnA macroscopic model for unsteady incompressible isothermal non-Newtonian flow in homogeneous porous media, taking into account inertial and slip effects at solid–fluid interfaces, is derived in this work. The development is carried out considering a general Newton’s law of viscosity for the fluid phase. Using the classical volume averaging method, the seepage velocity is shown to be solenoidal. The macroscopic momentum equation is derived in the Laplace domain, employing a simplified version of the volume averaging method, which calls upon Green’s formulas and adjoint problems for Green’s function pairs for the velocity and pressure. In the Laplace domain, the macroscopic momentum equation takes the form of Darcy’s law corrected by a term that accounts for the initial flow condition. Once transformed back into the time domain, this equation provides the macroscopic velocity that depends on two terms. The first one is under the form of a time convolution between the macroscopic pressure gradient and the time derivative of an apparent permeability tensor. The second one is a memory term that accounts for the effect of the initial flow conditions. These two effective quantities are determined from the solution of a single closure problem that naturally results from the derivations. The model is consistent with the unsteady model in the Newtonian case and simplifies to the steady versions of some non-Newtonian macroscopic flow models. The macroscopic model is validated with pore-scale simulations performed in 2D model porous structures, considering a Carreau fluid. The impact of inertia and non-Newtonian effects on the dynamics of the macroscopic coefficients is highlighted.
dc.language.isoENen_US
dc.subject.enAdjoint method
dc.subject.enGreen’s formulas
dc.subject.enNon-Newtonian flow
dc.subject.enPorous media
dc.subject.enVolume averaging
dc.title.enMacroscopic model for unsteady generalized Newtonian fluid flow in homogeneous porous media
dc.title.alternativeJournal of Non-Newtonian Fluid Mechanicsen_US
dc.typeArticle de revueen_US
dc.identifier.doi10.1016/j.jnnfm.2022.104840en_US
dc.subject.halSciences de l'ingénieur [physics]/Matériauxen_US
bordeaux.journalJournal of Non-Newtonian Fluid Mechanicsen_US
bordeaux.volume306en_US
bordeaux.hal.laboratoriesInstitut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux INPen_US
bordeaux.institutionCNRSen_US
bordeaux.institutionINRAEen_US
bordeaux.institutionArts et Métiersen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Non-Newtonian%20Fluid%20Mechanics&rft.date=2022-08-01&rft.volume=306&rft.eissn=0377-0257&rft.issn=0377-0257&rft.au=S%C3%81NCHEZ-VARGAS,%20J.&VALD%C3%89S-PARADA,%20F.%20J.&LASSEUX,%20D.&rft.genre=article


Fichier(s) constituant ce document

Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée