Long-Term Deformations and Mechanical Properties of Fine Recycled Aggregate Earth Concrete
dc.rights.license | open | en_US |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | FARDOUN, Hassan | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | SALIBA, Jacqueline
IDREF: 17096647X | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | COUREAU, Jean-Luc
IDREF: 063468832 | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | COINTE, Alain
IDREF: 078155282 | |
hal.structure.identifier | Institut de Mécanique et d'Ingénierie [I2M] | |
dc.contributor.author | SAIYOURI, Nadia | |
dc.date.accessioned | 2023-02-10T12:29:46Z | |
dc.date.available | 2023-02-10T12:29:46Z | |
dc.date.issued | 2022-01-01 | |
dc.identifier.issn | 2076-3417 | en_US |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/171930 | |
dc.description.abstractEn | Earth-based materials are currently receiving high attention, as they are considered as sustainable. In addition, the reuse of waste materials and more particularly recycled aggregates can boost circular economy while reducing landfilling and mineral resource depletion. Incorporating recycled aggregates in earth concrete can be an innovative way to valorize them. However, investigations are required concerning their long-term behavior. Such an aspect is more important when fine recycled aggregates are considered. In this paper, the vulnerability to long term deformations of natural sand (NS) and recycled sand (RS) earth concrete mixtures is examined under real exposure conditions. Autogenous shrinkage, drying shrinkage, basic creep and drying creep of the different mixtures were monitored for a period of two months. Specimens were then subjected to compressive tests in order to evaluate their residual strength. Furthermore, the destructive tests were monitored in parallel with the acoustic emission (AE) technique. The results show an increase in the rate of drying creep and shrinkage for RS earth concrete mixtures. In addition, NS and RS earth concrete mixtures subjected to drying, with and without loading, reported a strength development in comparison to the reference mixtures. However, the Young’s modulus reported its lowest value for drying shrinkage of both mixtures. Regarding the AE technique, the distribution of its activity reflected the higher rate of damage of dried specimens in the pre-peak region. | |
dc.language.iso | EN | en_US |
dc.rights | Attribution 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/us/ | * |
dc.subject.en | Earth concrete | |
dc.subject.en | Autogenous shrinkage | |
dc.subject.en | Drying shrinkage | |
dc.subject.en | Basic creep | |
dc.subject.en | Drying creep | |
dc.subject.en | Recycled sand | |
dc.subject.en | Acoustic emission | |
dc.title.en | Long-Term Deformations and Mechanical Properties of Fine Recycled Aggregate Earth Concrete | |
dc.type | Article de revue | en_US |
dc.identifier.doi | 10.3390/app122211489 | en_US |
dc.subject.hal | Sciences de l'ingénieur [physics]/Matériaux | en_US |
bordeaux.journal | Applied Sciences | en_US |
bordeaux.volume | 12 | en_US |
bordeaux.hal.laboratories | Institut de Mécanique et d’Ingénierie de Bordeaux (I2M) - UMR 5295 | en_US |
bordeaux.issue | 22 | en_US |
bordeaux.institution | Université de Bordeaux | en_US |
bordeaux.institution | Bordeaux INP | en_US |
bordeaux.institution | CNRS | en_US |
bordeaux.institution | INRAE | en_US |
bordeaux.institution | Arts et Métiers | en_US |
bordeaux.peerReviewed | oui | en_US |
bordeaux.inpress | non | en_US |
hal.identifier | hal-03982419 | |
hal.version | 1 | |
hal.date.transferred | 2023-02-10T12:29:50Z | |
hal.export | true | |
dc.rights.cc | CC BY | en_US |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Sciences&rft.date=2022-01-01&rft.volume=12&rft.issue=22&rft.eissn=2076-3417&rft.issn=2076-3417&rft.au=FARDOUN,%20Hassan&SALIBA,%20Jacqueline&COUREAU,%20Jean-Luc&COINTE,%20Alain&SAIYOURI,%20Nadia&rft.genre=article |