Afficher la notice abrégée

dc.rights.licenseopenen_US
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorGOWDY, Mark
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorSUTER, Bruno
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorPIERI, Philippe
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorMARGUERIT-JACOB, Elisa
ORCID: 0000-0002-5016-990X
IDREF: 127516697
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorIRVINE, Agnès Destrac
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorGAMBETTA, Gregory
ORCID: 0000-0002-8838-5050
IDREF: 225449641
hal.structure.identifierEcophysiologie et Génomique Fonctionnelle de la Vigne [UMR EGFV]
dc.contributor.authorLEEUWEN, Cornelis Van
dc.date.accessioned2023-02-08T15:53:47Z
dc.date.available2023-02-08T15:53:47Z
dc.date.issued2022-06-24
dc.identifier.issn2494-1271en_US
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/171903
dc.description.abstractEnIn wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable.Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.
dc.description.sponsorshipCOntinental To coastal Ecosystems: evolution, adaptability and governance - ANR-10-LABX-0045en_US
dc.language.isoENen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subject.enGrapevine
dc.subject.enClimate change
dc.subject.enDrought stress
dc.subject.enVineyard water use models
dc.subject.enVitis vinifera
dc.subject.enCultivar
dc.title.enVariety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress
dc.typeArticle de revueen_US
dc.identifier.doi10.20870/oeno-one.2022.56.2.5435en_US
dc.subject.halSciences du Vivant [q-bio]/Biologie végétaleen_US
bordeaux.journalOeno Oneen_US
bordeaux.page205-222en_US
bordeaux.volume56en_US
bordeaux.hal.laboratoriesEcophysiologie et Génomique Fonctionnelle de la Vigne (EGFV) - UMR 1287en_US
bordeaux.issue2en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionBordeaux Sciences Agroen_US
bordeaux.institutionINRAEen_US
bordeaux.peerReviewedouien_US
bordeaux.inpressnonen_US
bordeaux.identifier.funderIDAgence Nationale de la Rechercheen_US
hal.exportfalse
dc.rights.ccCC BYen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Oeno%20One&rft.date=2022-06-24&rft.volume=56&rft.issue=2&rft.spage=205-222&rft.epage=205-222&rft.eissn=2494-1271&rft.issn=2494-1271&rft.au=GOWDY,%20Mark&SUTER,%20Bruno&PIERI,%20Philippe&MARGUERIT-JACOB,%20Elisa&IRVINE,%20Agn%C3%A8s%20Destrac&rft.genre=article


Fichier(s) constituant ce document

Thumbnail
Thumbnail

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée