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ABSTRACT 

In wine growing regions around the world, climate change has the potential to affect vine 
transpiration and overall vineyard water use due to related changes in daily atmospheric 
conditions and soil water deficits. Grapevines control their transpiration in response to such 
changes by regulating conductance of water through the soil-plant-atmosphere continuum. The 
response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, 
to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and 
Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature 
and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured 
on 15-minute intervals from early July through mid-September 2020, together with periodic 
measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, 
bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression 
analysis was performed to identify key variables and their relative effect on conductance.  
For the regression analysis, attention was focused on addressing non-linearity and collinearity in 
the explanatory variables and developing a model that was readily interpretable. 
Variability of vapour pressure deficit in the vine canopy over the day and predawn water 
potential over the season explained much of the variability in bulk stomatal conductance overall, 
with relative differences between varieties appearing to be driven in large part by differences 
in conductance response to predawn water potential between the varieties. Transpiration 
simulations based on the regression equations found similar differences between varieties in 
terms of daily and seasonal transpiration. These simulations also compared well with those 
from an accepted vineyard water balance model, although there appeared to be differences 
between the two approaches in the rate at which conductance, and hence transpiration is reduced 
as a function of decreasing soil water content (i.e., increasing water deficit stress). By better 
characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can 
be better parameterized in vineyard water use modeling of current and future climate scenarios.
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INTRODUCTION 

Grapevines regulate their water use in response to changing 
atmospheric demand and drought stress by regulating the 
conductance of water through the soil-plant-atmosphere 
continuum (McElrone et al., 2013). This conductance is 
regulated by various physiological mechanisms such as 
control of stomatal aperture and hydraulic conductivity of 
the vasculature (Lovisolo et al., 2010). The resistance to 
water vapour diffusion through open stomata is much greater 
than the resistance of water through the vasculature, with 
that through the stomata becoming the controlling factor in 
overall transpiration (Sack and Holbrook, 2006; Krounbi and  
Lazarovitch, 2011). Stomatal regulation of conductance 
varies diurnally (Bai et al., 2015; Lu et al., 2003; Zhang  
et al., 2012), across the season (Herrera et al., 2021), and with 
differences in response to changing environmental variables 
observed between varieties (Costa et al., 2012; Prieto et al., 
2010).

Plant species that readily close their stomata to reduce 
transpiration and maintain constant leaf water potential 
when faced with increasing vapour pressure deficit, and/or 
decreasing soil water status are classified as isohydric, while 
those that keep their stomata open and allow for more negative 
leaf water potential are classified as anisohydric (Tardieu and  
Simonneau, 1998). This stomatal regulation, however, does 
not always fit neatly into these categories (Martínez-Vilalta 
et al., 2014), with some species demonstrating responses 
that vary with water stress (Levin et al., 2020), or a hybrid 
response such as isohydrodynamic, whereby stomata are 
regulated to maintain a roughly constant difference between 
leaf and soil water potential (Franks et al., 2007; Domec 
and Johnson, 2012; Zhang et al., 2012; Charrier et al., 
2018). Within the species Vitis vinifera, different varieties 
demonstrate a range of response dynamics, which are difficult 
to categorize, or they display inconsistent dynamics across 
numerous different studies (Chaves et al., 2010; Lavoie-
Lamoureux et al., 2017). For example, Syrah has often been 
found in studies to demonstrate anisohydric response (Prieto 
et al., 2010; Schultz, 2003), but in others has demonstrated 
near-isohydric response for this variety (Pou et al., 2012), 
although such differences could be attributable to soil and 
climate differences (Hochberg et al., 2018). 

The ability of the soil to deliver water through its 
pore spaces to the roots is also a key component in  
the soil-plant-atmosphere continuum. Depending on the 
texture of the soil, water potential decreases as the soil water 
content decreases, particularly once the fraction of transpirable 
soil water drops below about 0.4 (Schultz, 1996; Lebon et al., 
2003) as experienced during drought conditions. This leads 
to a corresponding reduction in the hydraulic conductivity 
within the soil matrix supplying water to the roots (Krounbi 
and Lazarovitch, 2011; Tramontini et al., 2012) and therefore 
the overall conductance across the soil-plant-atmosphere 
continuum, and hence stomatal conductance.

Crop evapotranspiration (ETc) is often modeled using the FAO 
56 approach of applying seasonally variable crop coefficients 

(Kc) to estimates of reference crop evapotranspiration (ETo), 
which are calculated using the Penman Monteith (PM) 
equation based on an assumption of well-watered conditions 
and an associated fixed crop canopy conductance (Allen  
et al., 1998). To account for drought stress this approach then 
applies a stress coefficient (Ks) to ETc to calculate adjusted 
crop evapotranspiration (ETc adj). Ks is assumed to be 1.0 (i.e., 
no water stress) until the modeled balance of available soil 
water decreases below a threshold value, below which the 
Ks decreases linearly to zero where the soil water content 
reaches the wilting point. A vineyard water balance model 
adapted from this FAO approach was developed by Lebon 
et al. (2003), although it is not parameterized to distinguish 
differences in transpiration between varieties. 

Being able to characterize variety-specific changes in 
conductance in response to changing atmospheric conditions 
and drought would help improve modeling of the vine canopy 
transpiration component in vineyard water balance models, 
particularly for evaluating different adaptation strategies 
under future climate change scenarios. Therefore, the main 
goal of this study is to quantify and differentiate the response 
of bulk stomatal conductance (gbs) of different grapevine 
varieties to changes in key environmental variables potentially 
affected by climate change, and to simulate transpiration 
using these relationships for comparison against an existing 
vineyard water balance model. As described by Gowdy et al. 
(2022), gbs can be calculated in vineyards with open canopies 
based on an inverted Penman-Monteith type transpiration 
equation and the assumptions of the two-source energy flux 
approach developed by Shuttleworth and Wallace (1985). 
The total conductance of the vine canopy (gbs) is effectively 
the stomatal conductance of every leaf in the canopy acting 
together in a parallel circuit, which conceptually is the sum 
of the stomatal conductance of all those leaves (Kelliher  
et al., 1995).

The diffusion of water vapour through stomata is affected 
by: i) solar radiation, which provides energy for evaporation 
and diffusion; ii) vapour pressure deficit, which is the driving 
force for diffusion; and iii) the effects of boundary layer 
resistance to diffusion at the leaf surface (Keller, 2015).  
The stomatal openings themselves can also be affect by 
changes in light levels (Shimazaki et al., 2007) and vapour 
pressure deficit (Oren et al., 1999). By analogy at the vine 
canopy scale, the amount of net radiation absorbed by the 
vine canopy (Rc) provides the energy for canopy transpiration 
(Monteith and Unsworth, 2013) and can be affected by 
changes in cloud cover associated with climate change 
(Mendoza et al., 2021) and global dimming/brightening 
associated with human-induced pollution and its interaction 
with the climate (Wild, 2009). Canopy dimensions are 
also an important factor in determining Rc (Riou et al., 
1989; Pieri, 2010) and can be modified by growers as an 
adaptation to climate change (van Leeuwen et al., 2019a). 
Similarly, vapour pressure deficit in the canopy (Dc) may 
be affected by climate change related impacts on air and 
canopy temperatures, and the tendency towards lower 
relative humidity in near-surface air over land as observed in  
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the last 20 years in the mid-latitudes and Mediterranean 
(Willett et al., 2014). Another variable for consideration is 
the leaf area index (LAI), which in turn affects bulk boundary 
layer resistance (Shuttleworth and Wallace, 1985; Lhomme 
et al., 2012). LAI can be affected by vine vigour, which 
can depend on the variety, the rootstock and the available 
resources, such as water and nutrients (Smart and Robinson, 
1991). Then, later in the season it can be affected by leaf 
drop. Grapevines are known to drop leaves in response 
to increasingly intense drought conditions as a way of 
controlling their transpiration (Zufferey et al., 2011).

Additionally, vine water deficit stress can have an important 
effect on vine transpiration and conductance. Physiological 
vine responses, such as changes in photosynthesis, stomatal 
closure, and shoot growth characteristics in response to water 
deficit stress, are often correlated well with water potential 
(Lebon et al., 2003; Pellegrino et al., 2006). Measurement 
of predawn leaf water potential (ΨPD) is an accepted  
plant-based measurement of plant water status (Sperry et al., 
1996), which gives the water potential of the plant at the end 
of the night when the stomata are closed and the plant is in 
equilibrium with the root zone water potential (Choné et al., 
2001). Climate change has the potential to affect vine water 
stress if there are changes in precipitation and/or vineyard 
evapotranspiration. As an adaptation, the planting density of 
new vineyards can be decreased, or irrigation can be used 
(van Leeuwen et al., 2019a; van Leeuwen et al., 2019b).

In this paper, a multiple linear regression approach was used 
in an iterative fashion to develop an explanatory statistical 
model of calculated gbs as the response variable against: i) net 
radiation absorbed by the vine canopy; ii) vapour pressure 
deficit in the vine canopy; and iii) predawn leaf water 
potential as the three predictor variables. The emphasis is 
on developing a model that is readily interpretable for the 
purpose of characterizing the dynamics of this response. 

MATERIALS AND EQUIPMENT 

The measurements for this study were taken on 10 individual 
grapevines in a vineyard, two each of Vitis vinifera L., cv. 
Cabernet-Sauvignon, Merlot, Tempranillo, Semillon, and 
Ugni blanc. Measurements of sap flow, temperature and 
humidity, and solar radiation were taken or interpolated to 
15-minute intervals from 30 June through 15 September 
2020 and canopy characteristics were measured periodically 
through the season. 

1. Vineyard and canopy characteristics
The study was performed in a 0.6-hectare common garden 
experimental vineyard in Bordeaux, France (44° 47’ 0” N, 0° 
34’ 39” W) with 52 varieties planted in a randomized block 
design, in which the varieties were planted in 5 replicate 
blocks of 10 vines each. All measured vines were located in 
different blocks of the vineyard, with the exception of the 
two Merlot vines, which were in two different rows within 
the same block. The vines are trained on a vertical shoot 
positioning trellis system with double Guyot pruning. 

The top and bottom of the vine canopy are 1.5 m and 0.5 m 
above the ground respectively and 0.4 m wide, with canopy 
dimensions maintained by hedging twice during the growing 
season. Vine rows are orientated north-south with 1.8 m row 
spacing and 1.0 m vine spacing. There is a mowed cover crop 
in between each vine row with mechanical tillage under the 
vine row. The vines were planted on SO4 rootstock and the 
soils are sandy-clay-gravel typical for the Pessac-Léognan 
wine appellation (Destrac-Irvine and van Leeuwen, 2017). 
From 1991 through 2020 average annual total rainfall and 
reference evapotranspiration were 902 mm and 929 mm 
respectively with annual solar radiation of 4790 MJ m-2 and 
average maximum daily temperature from May through 
September of 25.5 C°.

Leaf area was measured three times during the season in 
the first halves of July, August and September respectively. 
Leaf area was determined on each vine by first measuring 
the length and width of all individual leaves on one primary 
shoot and all its secondary shoots, which averaged just 
over 100 leaves on each vine on each measurement date.  
Those dimensions were well correlated with individual 
leaf area as measured by a leaf area meter (Model LI-3100 
LICOR Inc., Lincoln, NE, USA) before field measurements 
began. An average size of leaves on primary and secondary 
shoots were then calculated and applied to a count of all the 
leaves on the remaining primary and secondary shoots on 
each vine. Leaf area index (LAI, m2 m-2) is calculated as the 
total leaf area (m2) for a vine divided by the area of vineyard 
ground attributable to each vine (i.e., row spacing x vine 
spacing). The porosity of each vine canopy was measured in 
the vineyard using a camera phone application (CANAPEO, 
Oklahoma State University Department of Plant and Soil 
Sciences, Stillwater, OK, USA) on the same dates as leaf area 
measurement with any missing measurements being filled in 
using a regression between measured leaf area and porosity. 

2. Field measurements
Transpiration flux (Ec) was measured by heat balance sap flow 
sensors (Model SGEX, Dynamax Inc., Houston, TX, USA) 
that were installed on vine canes at a location where the flow 
of at least 30 % of the whole vine would be measured (based 
on the relative number of shoots downstream of the sensor). 
Sap flow (g s-1) was calculated from sensor signals collected 
by a datalogger (Model SapIP, Dynamax Inc., Houston, 
TX, USA) and then scaled up for the whole vine based on 
the ratio of leaf area of the whole vine over the leaf area of 
shoots downstream the sap flow sensor. Sap flow (g s-1) was 
then divided by the area of vineyard ground attributable to 
each vine (i.e., row spacing x vine spacing) to give canopy 
transpiration flux, Ec (g s-1 m-2).

Vapour pressure deficit (Dc) was measured in the vine canopy 
at 1.15 m above the ground. This height was estimated to be 
that above which heat and vapour flux from both the vine 
canopy and ground surrounding the vine rows is well mixed 
(Shuttleworth and Wallace, 1985; Gowdy et al., 2022). 
The mean canopy height was estimated using empirical 
relationships for vineyards based primarily on canopy height 
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(Chahine et al., 2014). The saturation vapour pressure,  
esc (Pa) was calculated by Teten’s equation using measured 
temperature Tc (C°) with the partial vapour pressure, ec 
(Pa) calculated from esc using measured relative humidity. 
Temperature and humidity were measured using TinyTag 
Plus 2 probe/data loggers (Model TGP-4505 by Gemini 
Data Loggers, Chichester, West Sussex, England) with the 
temperature/relative humidity probes installed inside solar 
radiation shields (Model RS3 by Prosensor, Amanvillers, 
France) and hung from a trellis wire in the vine canopy at the 
mean canopy height.

Global (shortwave) radiation flux was measured at a weather 
station next to the vineyard using a horizontally mounted 
pyranometer (Model No. CMP6 by Kipp & Zonen, Delft - 
The Netherlands) on one-hour intervals, and then linearly 
interpolated to 15-minute intervals.

Measurements of ΨPD were taken on each vine in the 
study at six times during the season, roughly 10-14 days 
apart depending on weather, from early July through early 
September 2020. Sampling and measurement were done 
early enough to ensure all measurements were completed no 
later than 30 minutes prior to sunrise. Measurements were 
taken on one leaf per vine by the method of Scholander  
et al. (1965) using a pressure chamber with digital manometer 
(DG MECA, 33175 Gradignan, France).

METHODS

A multiple linear regression analysis was performed in an 
iterative fashion by: i) applying data filters and calculating 
bulk stomatal conductance; ii) making necessary data 
transformations; iii) selecting predictor variables to include 
in the final regression model; and iv) verifying that ordinary 
least squared assumptions are properly met in the final 
regression model. The intent of the above is to obtain a readily 
interpretable model with the best possible fit. While non-
linear, or non-parametric regression analysis might provide 
a better fit with lower residuals, the coefficients from such 
models become less readily interpretable (Shmueli, 2010).

1. Data compilation and filtering
A database of Rc and Dc was compiled from measurements 
and estimates on 15-minute intervals from 30 June through 
15 September 2020. Missing data were replaced by linear 
interpolation if there were no more than four missing 
15-minute measurements between available data points, 
otherwise gaps in the data were maintained. Measurements 
of ΨPD and LAI were also included, but as they were 
obtained only periodically during the season, those data 
were interpolated to a daily time step using a local weighted 
regression (LOESS) curve between measurements. Over 
the study period there was only one significant rain event of  
36 mm on 11 through 13 August 2020, with ΨPD taken just 4 
days before and 7 days afterwards. During the remainder of 
the study period, no other daily rainfall total exceeded more 
than a few millimeters, which is well below an amount that 
would affect predawn water potential.

The equation for calculating gbs (as described in the next 
section) was observed to give unrealistically high and 
erratic results when input values of Rc, Dc, or Ec were low, 
particularly in the early morning and evening. These low 
values also introduced irregularities in the residual plots for 
regressions that included them. The data, therefore, were 
filtered on a trial-and-error basis to eliminate these problems. 
Previous studies of conductance in vineyards took a similar 
approach of filtering low net radiation data to address such 
issues (Lu et al., 2003; Zhang et al., 2012). 

The selected filters were applied separately to the data 
from individual vines when Rc < 90 W m-2 or Dc < 900 Pa 
or if Ec was less than the 30th percentile of all values for a 
given vine. The latter filter was applied on a percentile 
basis due to the differing ranges of Ec observed across the 
different vines measured. Otherwise, fixed filter thresholds 
might disproportionally remove more data from vines with 
generally lower Ec than other vines. The Ec data in general 
was strongly skewed towards lower values, so application of 
the filters removed data records at times when Ec was very 
low, resulting in only a 9 to 14 percent reduction, depending 
on the vine, in measured transpiration over the season. This 
reduction ranged slightly higher from 9 to 18 percent for 
transpiration during times when drought stress, as measured 
by predawn water potential was less than - 4.0 bars. The loss 
of these values was not considered significant for the purpose 
of regression analysis aimed at defining relationships at 
higher transpiration rates when the majority of vine water 
use actually takes place. 

After the data from each vine was filtered, they were 
all combined into one database for regression analysis. 
Summary statistics for the combined database are presented 
in Supplementary Table S1. It is noted that due to sporadic 
instrument outages and differing start times, the number 
of 15-minute data points collected on the vines of each 
variety were different. Also, units for Rc and Dc in the final 
regressions were converted to kW/m2 and kPa respectively to 
avoid problematically small coefficients that resulted when 
using the units specified for Equations 1 and 2.

Data compilation, filtering, and graphing were performed 
in the R software environment (R Core Team, 2021) using 
several functions from the dplyr package (Wickham et al., 
2021b) and the ggplot2 package (Wickham et al., 2021a).

2. Bulk stomatal conductance
As presented by Gowdy et al. (2022) bulk stomatal conductance 
(gbs) is determined from the 2-layer energy flux model for 
sparse crop canopies, like those of vineyards, as developed by 
Shuttleworth and Wallace (1985) using a Penman-Monteith 
(PM) type equation for calculation of latent heat flux from the 
vine canopy as given by Equation 1 (Lhomme et al., 2012). 

 Equation 1: 𝜆𝜆𝜆𝜆𝑐𝑐 = ∆𝑅𝑅𝑐𝑐+ 𝜌𝜌𝜌𝜌𝑝𝑝(𝐷𝐷𝑐𝑐)/𝑟𝑟𝑏𝑏ℎ
∆+𝛾𝛾(𝑛𝑛+𝑟𝑟𝑏𝑏𝑏𝑏

𝑟𝑟𝑏𝑏ℎ
)

             (W m-2)          

 

𝑟𝑟𝑏𝑏𝑏𝑏 = ∆𝑅𝑅𝑐𝑐∗𝑟𝑟𝑏𝑏ℎ+ 𝜌𝜌𝜌𝜌𝑝𝑝𝐷𝐷𝑐𝑐
𝜆𝜆𝜆𝜆𝑐𝑐𝛾𝛾 − 𝑟𝑟𝑏𝑏ℎ (∆

𝛾𝛾 − 𝑛𝑛)             (s m-1) 

 

gbs = rbs
-1             (m s-1)  

 

𝑟𝑟𝑏𝑏ℎ =  𝑟𝑟𝑏𝑏𝑏𝑏
2∗𝐿𝐿𝐿𝐿𝐿𝐿             (s m-1)                 

 

log10(gbs) ~ (Rc + Dc + 𝛹𝛹PD) * variety     

 

gbs = 𝛽𝛽0 + 𝛽𝛽 Rc*Rc + 𝛽𝛽 Dc*Dc + 𝛽𝛽 𝛹𝛹*𝛹𝛹PD   

 

This equation is first rearranged to give the bulk stomatal 
resistance (rbs) as given in Equation 2 and followed by gbs 
from Equation 3.
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 Equation 2:  

𝜆𝜆𝜆𝜆𝑐𝑐 = ∆𝑅𝑅𝑐𝑐+ 𝜌𝜌𝜌𝜌𝑝𝑝(𝐷𝐷𝑐𝑐)/𝑟𝑟𝑏𝑏ℎ
∆+𝛾𝛾(𝑛𝑛+𝑟𝑟𝑏𝑏𝑏𝑏

𝑟𝑟𝑏𝑏ℎ
)

             (W m-2)          

 

𝑟𝑟𝑏𝑏𝑏𝑏 = ∆𝑅𝑅𝑐𝑐∗𝑟𝑟𝑏𝑏ℎ+ 𝜌𝜌𝜌𝜌𝑝𝑝𝐷𝐷𝑐𝑐
𝜆𝜆𝜆𝜆𝑐𝑐𝛾𝛾 − 𝑟𝑟𝑏𝑏ℎ (∆

𝛾𝛾 − 𝑛𝑛)             (s m-1) 

 

gbs = rbs
-1             (m s-1)  

 

𝑟𝑟𝑏𝑏ℎ =  𝑟𝑟𝑏𝑏𝑏𝑏
2∗𝐿𝐿𝐿𝐿𝐿𝐿             (s m-1)                 

 

log10(gbs) ~ (Rc + Dc + 𝛹𝛹PD) * variety     

 

gbs = 𝛽𝛽0 + 𝛽𝛽 Rc*Rc + 𝛽𝛽 Dc*Dc + 𝛽𝛽 𝛹𝛹*𝛹𝛹PD   

and bulk stomatal conductance is given by inversion:

 Equation 3: 

where:

Ec = transpiration flux from canopy per unit ground area  
(g m-2 s-1)

λ = latent heat of vaporization for water = 2257 (J g-1)

Dc = vapour pressure deficit at mean canopy height (Pa)

Rc = net radiation absorbed by the vine canopy per unit 
ground area (W m-2)

rbs = bulk stomatal resistance (s m-1)

rbh = bulk boundary layer resistance to heat flux (s m-1)

n = 2 for grapevine leaves with stomata on one side only

γ = psychrometric constant at 1 atm and 20°C = 65.8 (Pa C°-1)

∆ = rate of change in saturation vapour pressure versus 
temperature = 145 (Pa C°-1)

ρCp = heat content per unit volume of air at 20°C = 1212  
(Pa C°-1)

The output units for Equation 2 (s m-1) and Equation 3  
(m s-1) result when the above input units are used, with all 
conductance/resistance and fluxes expressed in terms of unit 
area of vineyard ground attributable to each vine (i.e., row 
spacing x vine spacing).

The method of Riou et al. (1989) was used for estimating the 
amount of such radiation absorbed by grapevine canopy (Rc) 
as needed for input to Equations 1 or 2. Relying on inputs of 
canopy dimensions, row spacing, vine spacing, and canopy 
porosity, along with measured solar radiation and various 
solar angles, this model outputs radiation flux (W m-2) of 
shortwave radiation absorbed by the vine canopy expressed 
in terms of the unit area of vineyard ground attributable to 
each vine (i.e., row spacing x vine spacing) (Riou et al., 
1989). 

The canopy bulk boundary layer resistance to heat flux (rbh) 
needed as input to Equations 1 and 2 is given by Equation 
4 below and represents the canopy-level summation of the 
leaf-level boundary layer resistances across all leaves in the 
canopy stated in terms of unit ground area (Lhomme et al., 
2012):

 Equation 4: 

𝜆𝜆𝜆𝜆𝑐𝑐 = ∆𝑅𝑅𝑐𝑐+ 𝜌𝜌𝜌𝜌𝑝𝑝(𝐷𝐷𝑐𝑐)/𝑟𝑟𝑏𝑏ℎ
∆+𝛾𝛾(𝑛𝑛+𝑟𝑟𝑏𝑏𝑏𝑏

𝑟𝑟𝑏𝑏ℎ
)

             (W m-2)          

 

𝑟𝑟𝑏𝑏𝑏𝑏 = ∆𝑅𝑅𝑐𝑐∗𝑟𝑟𝑏𝑏ℎ+ 𝜌𝜌𝜌𝜌𝑝𝑝𝐷𝐷𝑐𝑐
𝜆𝜆𝜆𝜆𝑐𝑐𝛾𝛾 − 𝑟𝑟𝑏𝑏ℎ (∆

𝛾𝛾 − 𝑛𝑛)             (s m-1) 

 

gbs = rbs
-1             (m s-1)  

 

𝑟𝑟𝑏𝑏ℎ =  𝑟𝑟𝑏𝑏𝑏𝑏
2∗𝐿𝐿𝐿𝐿𝐿𝐿             (s m-1)                 

 

log10(gbs) ~ (Rc + Dc + 𝛹𝛹PD) * variety     

 

gbs = 𝛽𝛽0 + 𝛽𝛽 Rc*Rc + 𝛽𝛽 Dc*Dc + 𝛽𝛽 𝛹𝛹*𝛹𝛹PD   

              

where: 

rbl = leaf-level boundary layer resistance (s m-1) = 25 s m-1 per 
Shuttleworth and Wallace (1985).

LAI = leaf area index.

Using input data from the compiled and filtered database,  
gbs was calculated using Equations 2 and 3 and rbh was 
calculated using Equation 4, with the results of both appended 
back to the database. 

3. Response variable transformation
Biological and environmental data often demonstrate  
non-linear relationships and collinearity between variables 
(Dormann et al., 2013), which must be addressed in order 
to meet the required assumptions of ordinary least squared 
regression analysis. 

Figure 1 presents bulk stomatal conductance (gbs) plotted 
versus 15-minute canopy vapour pressure deficit (Dc), net 
radiation absorbed by the canopy (Rc), and interpolated 
predawn leaf water potential (ΨPD) for each variety 
separately. In previous studies of Vitis vinifera varieties, non-
linear relationships between gbs and Dc have been observed 
(Prieto et al., 2010; Lu et al., 2003). A similar non-linear 
relationship also existed between the gbs and ΨPD data, while 
the relationship between gbs and Rc did not demonstrate any 
non-linear characteristics. 

To address the non-linearity in the relationship between gbs 
and both Dc and ΨPD, a log10 transformation of gbs was used 
as the response variable in subsequent regression analyses. 
For the data from all 10 vines combined, Figure 2 presents 
the log10 transformation of gbs plotted against 15-minute Dc, 
Rc, and interpolated ΨPD data demonstrating roughly linear 
relationships for each relationship. The effect of the data 
filters can also be seen in the plot panels for Rc and Dc in both 
Figures 1 and 2.

4. Predictor variable selection
The process of selecting variables to consider for inclusion 
in the regression analysis began with ΨPD and the key input 
variables to Equations 2 and 3 for calculation of gbs, including 
Rc, Dc, and rbh. 

Vine water status, as measured by ΨPD, is well understood 
to have an effect on conductance, and was found to have a 
statistically significant and strong effect on gbs in the final 
regression analysis. But unlike the 15-minute interval 
measurements of Rc and Dc, the periodic measurements of 
ΨPD will miss some of the range and response of the varying 
water status experienced by the vines. This is unavoidable 
due to the nature of measuring leaf water potential. The 
final regression analysis also shows Rc and Dc as having 
statistically significant and strong effects on gbs and were 
retained in the final model.

Regression model iterations including rbh as a predictor 
generated statistically significant (p < 0.05) coefficients for 
that variable, but they explained only a small portion of 
variation in gbs. This also concurs with findings from Gowdy 
et al. (2022) and from Shuttleworth and Wallace (1985) that 
found rbh to be of much less importance than the other input 
variables in the determination of gbs. Furthermore, there was 
strong collinearity between rbh and ΨPD, which contributed to 
very high variance inflation factors for the two variables and 
their interactions. 

𝜆𝜆𝜆𝜆𝑐𝑐 = ∆𝑅𝑅𝑐𝑐+ 𝜌𝜌𝜌𝜌𝑝𝑝(𝐷𝐷𝑐𝑐)/𝑟𝑟𝑏𝑏ℎ
∆+𝛾𝛾(𝑛𝑛+𝑟𝑟𝑏𝑏𝑏𝑏

𝑟𝑟𝑏𝑏ℎ
)

             (W m-2)          

 

𝑟𝑟𝑏𝑏𝑏𝑏 = ∆𝑅𝑅𝑐𝑐∗𝑟𝑟𝑏𝑏ℎ+ 𝜌𝜌𝜌𝜌𝑝𝑝𝐷𝐷𝑐𝑐
𝜆𝜆𝜆𝜆𝑐𝑐𝛾𝛾 − 𝑟𝑟𝑏𝑏ℎ (∆

𝛾𝛾 − 𝑛𝑛)             (s m-1) 

 

gbs = rbs
-1             (m s-1)  

 

𝑟𝑟𝑏𝑏ℎ =  𝑟𝑟𝑏𝑏𝑏𝑏
2∗𝐿𝐿𝐿𝐿𝐿𝐿             (s m-1)                 

 

log10(gbs) ~ (Rc + Dc + 𝛹𝛹PD) * variety     

 

gbs = 𝛽𝛽0 + 𝛽𝛽 Rc*Rc + 𝛽𝛽 Dc*Dc + 𝛽𝛽 𝛹𝛹*𝛹𝛹PD   
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This collinearity is associated with the leaf loss that coincides 
with the gradual increase in water stress over the season and 
the resulting more negative ΨPD. 

As a result, rbh was excluded from the final regression 
analysis. Ec is also an input to Equation 2, but was not 
considered in the regressions as regulation of gbs is how 

plants control Ec, making the two strongly collinear and of 
minimal explanatory value. 

In addition to the main effects of the predictor variables 
described above, interaction terms between these variables 
were also considered in a regression analysis based on 
standardized data (Supplementary Table S2). While nearly 
all interaction terms from this regression had coefficients that 

FIGURE 1. Bulk stomatal conductance (gbs) plotted versus canopy vapour pressure deficit (Dc), net radiation absorbed 
by the canopy (Rc), and interpolated predawn leaf water potential (ΨPD) by variety.

Mark Gowdy et al.

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society 2022 | volume 56–2 | 211

were significant (p < 0.05), their importance was not great 
compared to those for the main effects and furthermore, added 
considerable complexity to the model and its interpretability. 
The regression analysis was run again on the standardized 
data with the interaction terms excluded, which resulted in a 
model fit that was only slightly diminished and much simpler 
to interpret (Supplementary Table S3). For reference, the same 
regression without interactions was run again with raw data 
(Supplementary Table S4). The predictor variables retained 
in the final multiple linear regression model, therefore, were 
Rc, Dc and ΨPD, with no interaction terms included.

5. Multiple linear regression and ad hoc 
analysis
The formula used for the regression analysis of log10(gbs) 
as the response variable with Rc, Dc, and ΨPD as continuous 
predictor variables and variety as a grouping factor variable 
is given by Equation 5:

 Equation 5: log10(gbs) ~ (Rc + Dc + ΨPD) * variety 

Expressed in equation form, the multiple linear regression 
model resulting for each variety using the predictors selected 
above is given by Equation 6:

 Equation 6: gbs = β0 + βRc*Rc + βDc*Dc + βΨ*ΨPD 

where:

β0 = y-axis intercept

βRc = Rc regression coefficient

βDc = Dc regression coefficient

βΨ = ΨPD regression coefficient.

The effect of each predictor is characterized by the associated 
coefficient (β), which when based on raw data represents 
the average change in the response variable for a given unit 
change in each of the predictor variables. The regression 
analysis was also performed using standardized response 
and predictor variable data, whereby each data point is both 
subtracted by the mean and divided by the standard deviation 
of all values for a given variable. In this way the data is both 
centered on zero and has the same scale in terms of standard 
deviations from the mean. When based on standardized 

data, the resulting coefficients for the predictors represent 
the mean change in the response variable for one standard 
deviation change in the associated predictor. This is useful 
because with all data on the same scale, the absolute value of 
the regression coefficients for the different predictors can be 
compared directly to understand their relative effect on the 
response variable (Frost, 2020). 

Due to sporadic instrument outages and differing start times, 
the number of 15-minute data points collected on the vines 
of each variety were different. Also, even though it was 
minimized by the filtering and transformations, there was 
still a low level of collinearity between input variables as 
observed in the variance inflation factors (described further 
below). Such factors may complicate an ad hoc comparison 
of regression coefficients that might be obtained from 
regressions performed using the data from each variety 
separately. 

As an alternative, the filtered and transformed data from all 
vines was pooled together and a factor variable representing 
the different varieties was added, which is then included as part 
of an interaction term with each of the predictors. From this 
regression, the coefficients for each predictor are calculated 
as marginal mean slopes, whereby the average effect of each 
predictor on the response variable is calculated separately 
for each variety, at the same time assuming the mean values 
of all the other predictor variables (Searle et al., 1980;  
Lenth et al., 2022). This approach is useful in that the p-value 
for each interaction term indicates the significance of the 
difference between the coefficients (Lenth et al., 2022).  
The regression coefficients of the selected predictor variables 
were all significant (p < 0.05) and explained meaningful 
amounts of the variation in log10(gbs). For comparison 
purposes, separate variety specific regressions were performed 
(not presented) which gave identical regression coefficients 
and nearly identical intercept terms, suggesting that, in fact, 
the effect of the unbalanced data between varieties and  
the interactions were not that great. 

After each iteration, variance inflation factors (VIFs) were 
evaluated for each predictor variable and its interactions, 
if included. VIFs identify the presence and strength of 
interactions between model terms. The goal is for the 
VIFs for each predictor variable and any interaction 

FIGURE 2. Log10 transformation of gbs plotted versus canopy vapour pressure deficit (Dc), net radiation absorbed by 
the canopy (Rc), and interpolated predawn leaf water potential (ΨPD) with data from all 10 vines together (n = 23388).

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society212 | volume 56–2 | 2022

term to be below a generally accepted value of 5.0,  
with 1.0 representing complete independence (Frost, 2020).  
The VIFs for predictors Rc, Dc, and ΨPD in the final regression 
model based on combined data, whether standardized, or raw 
were 1.2, 1.2, and 1.1 respectively, which are well below a 
standard threshold of 5.0. The low VIFs suggest the effects 
of interactions were either successfully avoided by variable 
selection, or removed by filtering and transformation.  
The coefficient of determination (r2), or the fraction of 
log10(gbs) variance explained by the final model, whether 
based on raw or standardized data, was 0.701. Both the 
adjusted r2 and predicted r2 were also 0.701 in both cases, 
suggesting the model is not overfitted.

For multiple linear regression it is also important to check 
whether the underlying ordinary least square assumptions 
are satisfied. In Supplementary Figures S1 a) and b) the 
standardized model residuals are normally distributed 
with a mean of zero. Supplementary Figure S1 c) shows 
relatively constant variance in the standardized residuals 
plotted versus fitted values (i.e., no heteroscedasticity) and 
in Supplementary Figures S1 d) through f) there is relatively 
constant variance in the standardized residuals plotted versus 
the three predictor variable plots (i.e., no endogeneity).  
The residual plots for regressions based on standardized and 
raw data were identical, except for being on different scales.

Multiple linear regression analysis was performed in the  
R software environment (R Core Team, 2021) using the lm 
function; variance inflation factors were calculated using 
the vif function of the car package (Fox et al., 2021); and 
calculation of estimated marginal means of linear slopes 
were done using the emtrends function from the emmeans 
package (Lenth et al., 2022).

6. Transpiration simulations
The variety-specific predictor variable coefficients from the 
regression analysis based on raw data were used to simulate 
and compare vine canopy transpiration across varieties and 
to compare against simulations from an existing vineyard 
water balance model. 

6.1 Water balance model simulations
A time series of daily vine canopy transpiration and 
associated soil water depletions were estimated using the 
vineyard water balance model developed by Pieri and Bois 
(2007), as based on the methodology described in Lebon  
et al. (2003). For the purpose of comparison with regression 
model-based simulations, actual data from the 2020 growing 
season was also used in the water balance model, consisting 
of measured daily maximum and minimum temperature, 
rainfall, and solar radiation. It also requires inputs of canopy 
configuration and porosity and assumptions regarding total 
transpirable soil water (TTSW). This model, however, is not 
parameterized to distinguish differences in transpiration 
response between varieties, so only one generic transpiration 
estimate is produced.

The vine canopy transpiration component of 
evapotranspiration in this model is determined by first 

calculating the fraction of total incident radiation to the 
vineyard that is captured by the canopy (minus that which is 
reflected) using the method of Riou et al. (1989). This fraction 
is then applied to the reference crop evapotranspiration  
(i.e., soil evaporation plus vine transpiration) as calculated 
by the Penman equation and adjusted early in the season 
to account for gradual development of the canopy starting 
at budbreak. Also accounting for soil evaporation and 
precipitation, the model then tracks the daily balance of 
water in the assumed volume of TTSW within the vineyard 
root zone. 

As the fraction of remaining total available transpirable soil 
water (FTSW) in the root zone decreases, the model factors 
in reductions in transpiration to account for the reduced 
stomatal conductance associated with increasing drought 
stress. This reduction is achieved by a function relating 
the ratio of modeled vine transpiration to maximum vine 
transpiration (TV/TVmax) versus FTSW as presented in Pieri 
and Gaudillere (2005).

6.2 Regression model-based simulations
Using the final variety-specific regression equations, 
transpiration was simulated by first calculating a time series 
of log10(gbs) for each variety using a common 15-minute 
time series of predictor input data as measured during 
the 2020 growing season. For this purpose, the predictor 
coefficients determined based on raw data were used.  
A time series of gbs was then calculated by taking the base 
10 antilog of log10(gbs), which was then input to Equation 1 
along with the corresponding Rc, Dc, and rbh data to give an 
associated estimate of transpiration summed on a daily basis  
(mm day-1). All data, including that which was filtered before 
the regression analysis, was included in the transpiration 
simulations.

For these simulations, a time series of 15-minute 
measurements of Rc, and Dc from the 2020 season was 
selected from a representative vine. The time series of Rc 
and Dc across all 10 vines measured in the study were very 
similar. This is understandable as the amount of radiation 
absorbed by the vine canopy (Rc) is strongly influenced by 
canopy dimensions and porosity (Riou et al., 1989; Pieri, 
2010), which were all very similar for each vine. And while 
vapour pressure deficit in the vine canopy (Dc) was affected 
by vine transpiration, it was more strongly driven by ambient 
vapour pressure deficits and hence fairly similar across 
vines. Therefore, for the purpose of a common input to the 
transpiration simulations, Rc and Dc data from the vine with 
the most complete time series over the season was used in the 
regression equations for each of the five varieties. 

The regression model-based simulations also require an 
input of ΨPD. For this purpose, a daily time series of ΨPD was 
developed using the output of FTSW from the corresponding 
water balance model, which was converted to ΨPD by the 
FTSW to ΨPD relationships published in Figure 3 of Lebon 
et al., 2003. Differing levels of TTSW were assumed in the 
water balance model in order to understand the effect of  
the differing levels of associated FTSW on the regression 
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model-based simulations. TTSW values of 240 mm and  
200 mm were selected as described further below. 

RESULTS

1. Bulk stomatal conductance (gbs)
Figure 3 presents the 15-minute time series of bulk stomatal 
conductance (gbs, mm s-1) calculated with Equations 2 and 
3 using, as an example, data between 3 August through  
13 September 2020 from one vine of Cabernet-Sauvignon. 
Gaps in this time series are due to filtering of data early in 
the morning and late in the evening that otherwise caused 
erratic determinations of gbs. This line also has a colour 
gradient representing the corresponding interpolated ΨPD. 
Studies using somewhat similar approaches to estimate vine 
canopy conductance based on whole-plant transpiration 
measurements in vineyards found similar overall conductance 
levels and responses to changes in micrometeorological 
variables for c.v. Merlot (Zhang et al., 2012), c.v. Sultana  
(Lu et al., 2003), and cv. Thompson Seedless (Bai et al., 
2015), although the latter two studies did not evaluate  
the effect of decreasing soil water content over the season.

A noticeable increase in overall levels of conductance 
is observed after 36 mm of precipitation on 11 through  
13 August, the only significant rainfall of the study period. 
Predawn water potential measurements have been found to 
equilibrate with portions of the root zone having the highest 
water content (Améglio et al., 1999), such as may occur near 
the surface after a rainfall. A gradual decrease in both the 

overall level and diurnal amplitude of gbs is also observed 
in conjunction with the gradual onset of more negative ΨPD  
(i.e., water deficit stress) and/or perhaps developmental 
changes over the season. It also appears that the gbs timeseries 
is rather negatively correlated with the Dc timeseries  
(blue line in Figure 3) as might be expected from previous 
studies (Prieto et al., 2010; Lu et al., 2003).

The time series of gbs calculated in this way for each vine, 
along with the corresponding predictor variable data time 
series were used in the subsequent multiple linear regressions. 

2. Predictor variable coefficients
The multiple linear regression of log10(gbs) as the response 
variable with Rc, Dc, and ΨPD as continuous predictor variables 
was performed using variety as a grouping factor variable as 
described in Equation 5. From this, the regression coefficients 
(β) for the predictor variables as described in Equation 6 are 
presented separately for each variety in Tables 1a through  
1c for Rc, Dc, and ΨPD respectively. As these coefficients were 
developed based on standardized data, the magnitudes of 
their absolute values are directly comparable across varieties. 

There appears to be more of a differentiation between 
varieties in the ΨPD coefficients in Table 1c when compared 
to the predictors. And while the Rc coefficient covers a similar 
relative range, three of the varieties have very similar values 
in the mid-range as seen in Table 1a.

Table 2a presents the same predictor coefficients as in  
Tables 1a through 1c, instead listed in rows by variety, together 
with the y-axis intercepts. Based on standardized data,  

FIGURE 3. 15-minute time series of calculated bulk stomatal conductance (gbs, mm s-1) and daily maximum  
Dc (kPa) between 3 August through 13 September 2020 from one vine of Cabernet-Sauvignon, with colour gradient 
representing corresponding ΨPD (MPa).
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the magnitude of the absolute value of these coefficients 
are now comparable across the three predictors for a 
given variety. 

It is observed the absolute value of the Dc and ΨPD coefficients 
are comparable in magnitude, with both being about 1.5 
to 3.5 times larger than the Rc coefficient, suggesting their 
greater importance in explaining the variation of gbs observed 
in each corresponding variety. The relatively subdued 
response to Rc may be due to the relative consistent range 

of Rc measurements. As it is driven by solar radiation, 
whose daily fluctuations change only gradually over the 
season, Rc does not have the larger extremes seen in Dc  
and ΨPD, which then elicit greater responses from the vines.

For reference, Table 2b presents the same predictor 
coefficients based on raw data. When based on raw data, these 
coefficients can be used to calculate modeled bulk stomatal 
conductance (ĝbs) in its original units (mm s-1) as needed for 
subsequent sensitivity analysis and transpiration simulations. 

Variety β Low CL Upper CL p-value Pairwise

a) Standardized Rc coefficient

Cabernet-Sauvignon 0.161 0.145 0.177 ~ 0 a

Semillon 0.225 0.202 0.247 ~ 0 b

Tempranillo 0.255 0.235 0.275 ~ 0 b

Ugni blanc 0.256 0.241 0.272 ~ 0 b

Merlot 0.303 0.285 0.320 ~ 0 c

b) Standardized Dc coefficient

Ugni blanc -0.625 -0.641 -0.609 ~ 0 a

Semillon -0.582 -0.601 -0.563 ~ 0 b

Cabernet-Sauvignon -0.560 -0.577 -0.543 ~ 0 b

Merlot -0.558 -0.575 -0.541 ~ 0 b

Tempranillo -0.433 -0.452 -0.414 ~ 0 c

c) Standardized ΨPD coefficient

Merlot 0.423 0.400 0.445 ~ 0 a

Semillon 0.458 0.441 0.474 ~ 0 ab

Ugni blanc 0.485 0.458 0.512 ~ 0 bc

Cabernet-Sauvignon 0.512 0.499 0.524 ~ 0 c

Tempranillo 0.773 0.752 0.794 ~ 0 d

TABLE 1. Predictor variable coefficients (β) from regressions using standardized log10(gbs) as the response and 
standardized predictors Rc (a), Dc (b), and ΨPD (c) as continuous predictor variables, by variety with upper and lower 
95 % confidence limits (CL), p-values, and compact letter display of pairwise significance.

Pairwise comparisons with shared letters not significantly different (p < 0.05).

Variety β0 βRc β Dc βΨ

a) with standardized data

Merlot -0.036 0.303 -0.558 0.423

Semillon -0.036 0.225 -0.582 0.458

Ugni blanc -0.036 0.256 -0.625 0.485

Cabernet-Sauvignon -0.036 0.161 -0.560 0.512

Tempranillo -0.036 0.255 -0.433 0.773

b) with raw data

Merlot 0.788 1.110 -0.146 0.066

Semillon 0.788 0.824 -0.153 0.072

Ugni blanc 0.788 0.940 -0.164 0.076

Cabernet-Sauvignon 0.788 0.589 -0.147 0.080

Tempranillo 0.788 0.934 -0.114 0.121

TABLE 2. Regression coefficients (β) from final regression analysis for y-axis intercepts and predictor variables Rc, Dc, 
and ΨPD with a) standardized data, and b) raw data.
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The intercepts (β0) in each of Tables 2a and 2b are the 
same across all varieties due to the regression model 
being performed on data from all varieties combined.  
If the regression is performed between log10(gbs) and Rc, Dc, 
and ΨPD without including the variety factor variable, the 
intercept of the regression is zero, as expected when using 
standardized data. Including the factor variable for variety, 
however, introduces a very small intercept term (-0.036) as 
seen in Table 2a.

3. Sensitivity analysis
The modeled bulk stomatal conductance (ĝbs), as back 
transformed from modeled log10(gbs), and then plotted against 
Rc, Dc, and ΨPD shows the non-linear relationships with Dc 
and ΨPD that remains after regression (Figure 4). The range 
of ĝbs is somewhat diminished compared to the plots of raw 
calculated gbs presented in Figure 1 due to the least squared 
fitting of the regression model.

Plots of ĝbs across a range of hypothetical ΨPD values at fixed 
levels of Dc = 1.5 kPa and Dc = 4.5 kPa, and with a mean 
value of Rc = 0.263 kW m-2 (Figure 5) show higher overall 
ĝbs, and a greater spread in ĝbs between varieties at lower Dc 
and more positive ΨPD levels. And in keeping with its larger 
ΨPD coefficient in Table 1c, ĝbs for Tempranillo drops more 
quickly when compared to the other varieties as ΨPD becomes 
more negative. The general effect of increasing Dc can also 
be observed on the overall decrease in the ĝbs response curve 
with respect to ΨPD.

In keeping with the lower absolute value of its Dc coefficient 
in Table 1b, the ĝbs of Tempranillo drops off less quickly than 
the other varieties as Dc increases (Figure 6). 

Again, with a mean value of Rc = 0.263 kW m-2, the effect of 
more negative ΨPD =  - 0.5 MPa versus ΨPD =  - 0.1 MPa can 
also be observed in Figure 6, with an overall decrease in the 
levels of ĝbs at the more negative ΨPD. The spread between 
varieties, however, remains fairly similar between the two 
levels of ΨPD, particularly at lower levels of Dc.

The biggest differences in ĝbs between varieties were 
observed in the plot of ĝbs versus Rc, particularly at the lower 
Dc = 1.5 kPa (Figure 7, panel a). The steeper nature of the ĝbs 
versus Rc curve for Merlot is also particularly noticeable at  
Dc = 1.5 kPa, corresponding with its larger Rc coefficient when 
compared to other varieties as presented in Table 1a. Also, due 
to the smaller absolute value for its Dc coefficient observed 
above in Table 1b and Figure 6, the ĝbs for Tempranillo does 
not decrease as much relative to the other varieties at higher  
Dc = 4.5 kPa (Figure 7, panel b). A fixed value of  
ΨPD = -0.1 MPa was assumed in both panels of Figure 7. 
However, the Rc coefficients are generally smaller than those 
for the other predictors, as can be seen in the relative flatness 
of the lines in Figure 7, and won’t have as strong an influence 
on ĝbs.

FIGURE 4. Back-transformed ĝbs from modeled log10(gbs) plotted against Dc, Rc, and ΨPD data used for regressions from 
all 10 vines combined.

FIGURE 5. Modeled gbs (ĝbs, mm s-1) by variety plotted against a hypothetical range of ΨPD (MPa) with mean value of  
Rc = 0.263 kW m-2 and: a) Dc = 1.5 kPa; and b) Dc = 4.5 kPa. 
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In general, across all the plots in Figures 5 through 7, Merlot 
has the highest ĝbs, while either Tempranillo, or Cabernet-
Sauvignon had the lowest.

4. Simulations of canopy transpiration
Similar to the differences in ĝbs observed in the sensitivity 
analysis above, the simulated transpiration for the five 
varieties calculated using their respective regression 
equations found Merlot to have the greatest daily and season 
total simulated transpiration, while Tempranillo or Cabernet-
Sauvignon had the lowest, regardless of the TTSW assumption 
(coloured lines in Figure 8a for TTSW = 240 mm and Figure 
8b for TTSW = 200). It is also observed that the ordering 
in the relative rates of simulated transpiration by variety 
in both figures follows the same ordering in magnitude 
of the ΨPD regression coefficients by variety in Table 1c. 
Although there are greater differences between varieties for  
the Rc coefficient as seen in Table 1a, the overall magnitude 
of the Rc coefficients relative to those for Dc and ΨPD were 
substantially smaller and hence have less effect on ĝbs.

These simulations were based on common Rc and Dc input 
data from the 2020 season, with the time series of ΨPD needed 
for the simulations generated by the water balance model 
using climate data for the same time period and assuming 
TTSW = 240 mm (Figure 8, panel a) and TTSW = 200 mm 

(Figure 8, panel b). An estimate of TTSW for the vineyard 
was not available, so these were considered two values within 
a reasonable range, which resulted in simulated transpiration 
rates similar to those measured during the study. The median 
daily transpiration rate from 30 June to 15 September 
2020 period ranged, depending on the vine, between 1.0 to  
2.7 mm per day, with the maximum ranging between 2.5 and 
5.5 mm/day, depending on the vine. As they are all based on 
the same input data time series, these regression model-based 
simulations provide another form of sensitivity analysis 
across varieties, this time in terms of transpiration.

Comparison of the regression model-based simulation of 
vine transpiration (Figures 8a and 8b, coloured lines) against 
the water balance model simulation of vine transpiration 
excluding soil evaporation (Figures 8a and 8b, black line) 
finds generally good agreement. It appears, however, that 
the water balance model tends towards relatively higher 
transpiration, and therefore faster reductions in FTSW early 
in the season, leading to stronger transpiration reductions and 
underestimation of transpiration later in the season. 

In the water balance model, transpiration is regulated 
as a function of FTSW using the relative transpiration  
(TV/TVmax) versus FTSW function from Pieri and Gaudillere 
(2005). 

FIGURE 6. Modeled gbs (ĝbs, mm s-1) by variety plotted against a hypothetical range of Dc (kPa) with mean value of  
Rc = 0.263 kW m-2 and: a) ΨPD = -0.1 MPa; and b) ΨPD = -0.5 MPa. 

FIGURE 7. Modeled gbs (ĝbs, mm s-1) by variety plotted against a hypothetical range of Rc (kW m-2) with ΨPD = -0.1 MPa  
and : a) Dc = 1.5 kPa; and b) Dc = 4.5 kPa.

Mark Gowdy et al.

https://oeno-one.eu/
https://ives-openscience.eu/


OENO One | By the International Viticulture and Enology Society 2022 | volume 56–2 | 217

Relative transpiration (TV/TVmax) is the ratio of simulated 
transpiration at a given moment over its maximum.

Figure 9 presents a plot of the (TV/TVmax) versus FTSW 
function used to regulate transpiration in the water balance 
model (black line) together with plots of the relative 
transpiration (TV/TVmax) versus FTSW resulting from the 
regression model-based simulations (coloured lines). From 
Figure 9 it appears that at higher FTSW, as experienced 
earlier in the season, the relative transpiration function of the 
water balance model allows for relatively higher transpiration 
compared to that resulting from the regression models. This 
may explain the relatively higher daily transpiration simulated 
by the water balance model as observed early in the season in  
Figure 8, leading to a more rapid reduction in FTSW, 
and hence reduced transpiration by way of the relative 
transpiration versus FTSW reduction function later in the 
season. 

The ordering of the TV/TVmax versus FTSW curves resulting 
from the regression model-based simulations (coloured lines 
in Figure 9) are also the same as for the ΨPD coefficients in 

Table 1c. The variety most affected by FTSW in Figure 9 
is also Tempranillo, as suggested by it having the largest  
ΨPD coefficient in Table 1c, remembering in all cases, that 
FTSW and ΨPD are assumed to follow the relationship 
published in Figure 3 of Lebon et al., 2003.

As the TTSW assumption in water balance modeling 
decreases, for example from 240 mm to 200 mm as depicted 
in Figures 8 a) and b), the resulting overall FTSW also 
decreases. By way of the transpiration reduction functions 
in Figure 9 this leads to relatively lower rates of simulated 
daily transpiration seen in Figure 8 b) for TTSW = 200 mm,  
when compared to Figure 8 a) for TTSW = 240 mm. It 
should be noted, however, there is a great deal of uncertainty 
regarding the TTSW assumption in the water balance modeling 
due to soil conditions, planting density, and the rooting 
characteristics of different scion/rootstock combinations and 
even individual vines. Regardless, water balance model runs 
based on reasonable TTSW assumptions are still useful for 
comparison purposes.

FIGURE 8. Daily total vine transpiration (mm/day) for five varieties simulated using regression coefficients (coloured 
lines) and the daily total vine transpiration (mm/day) component from the water balance (black line) in panel a) based 
on TTSW = 240mm and in panel b) based TTSW = 200mm, with legend including total simulated transpiration from  
30 June to 15 September 2020. 
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Based on a constructed time series of input data, the simulation 
results above are not intended for direct comparisons to 
measured data, although there is general agreement with 
the latter falling in a similar range. In order to fully model 
transpiration using the variety specific regression equations, 
they would need to be part of a model that tracks soil water 
deficits or associated ΨPD over the course of the season in a 
feedback loop to the transpiration calculation. With differing 
transpiration rates for each variety, the resulting time series 
of FTSW, and hence ΨPD over the season, and its subsequent 
effect on transpiration would each be different.

DISCUSSION

In this study we developed estimates of whole-vine bulk 
stomatal conductance (gbs) and quantified its response to 
changes in the environment. Vapour pressure deficit in the 
vine canopy (Dc) and available soil water, as measured by 
predawn leaf water potential (ΨPD) were the main drivers 
of changes in gbs, with net radiation absorbed by the vine 
canopy (Rc) also being a factor. Although environmental 
drivers predominated, some significant differences in 
modeled gbs (ĝbs) response, and hence simulated water use 
over the growing season were observed between varieties, 
however, further study may be needed to better distinguish 
those differences. 

For both TTSW assumptions presented in Figures 8, Merlot 
had the highest seasonal total simulated transpiration, 
followed in order by Semillon, Ugni blanc, Cabernet-
Sauvignon, and Tempranillo. As the inputs of Rc, Dc and ΨPD 
to the calculation of simulated transpiration are the same for 
all varieties, these differences are then explained by overall 
differences in ĝbs. Beginning after the week of 17 July the 
ordering of varieties in terms of daily transpiration are the 
same as for the seasonal totals. Prior to then, however, the 
ordering is somewhat different, particularly with regards to 
Tempranillo, which demonstrated a lesser decrease in ĝbs in 

response to increasing Dc (Figure 6) and greater decrease in 
ĝbs in response to decreasing ΨPD (Figure 7) when compared 
to the other four varieties. This suggests Tempranillo puts 
greater emphasis on responding to decreasing ΨPD than on 
increasing Dc when compared to the other varieties. 

Field studies of Tempranillo found similar dynamics with 
regard to leaf-level stomatal conductance in response to 
predawn water potential (Medrano et al., 2003; Yuste et al., 
2004; Intrigliolo and Castel, 2006), although they did not 
evaluate the effects of vapour pressure deficit on conductance, 
nor compare against any of the of the other varieties included 
in this study. 

The change in the steepness of the slope in the relationship 
between ĝbs versus Rc, Dc or ΨPD is observed in Figures 5, 6, 
and 7 respectively to be generally greater, whether positive 
or negative, for those varieties with higher ĝbs at non-limited 
conditions. It is possible that varieties with higher overall gbs 
under less limited conditions will transpire more, deplete soil 
water reserves more quickly, and experience greater levels 
of soil water stress (or require more irrigation) sooner in the 
season than those with overall lower gbs. As ΨPD becomes 
more negative, then varieties with a greater βΨ will begin to 
restrict their transpiration more quickly to adapt. The rooting 
depth and resulting TTSW for individual vines or varieties 
are also an important consideration in the onset of soil water 
depletion. 

The different ways varieties regulate their conductance 
may result from varying interplay between the different 
physiological mechanisms controlling stomata. For example, 
studies on typically anisohydric varieties Merlot (Zhang 
et al. 2012) and Semillon (Rogiers et al., 2012) observed 
anisohydric response at higher soil water status, but more 
isohydric response for both varieties at low soil water status. 
In both cases, the isohydric response followed a general 
tendency towards greater stomatal closure in response to 
increasing vapour pressure deficit, with this greater response 

FIGURE 9. Relative transpiration (transpiration / maximum transpiration) as calculated using the regression models 
versus FTSW for each variety (coloured lines) and the transpiration reduction function used in the water balance model 
(black line).
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positively correlated with the reference gas exchange rate 
at non-limiting conditions, as expected from empirical and 
theoretical modeling (Oren et al., 1999; Domec and Johnson, 
2012). In the Merlot study, it was suggested the transition 
from anisohydric to isohydric response was due to a decrease 
in whole-plant conductance associated with decreased 
soil water status (Zhang et al. 2012). The Semillon study 
suggested the shift to isohydric behavior was attributable 
to increased abscisic acid (ABA) generated at lower soil 
water status, which further increases stomatal sensitivity to 
VPD (Rogiers et al. 2012). ABA produced in vine roots was 
also linked to changes in stomatal sensitivity in Cabernet-
Sauvignon (Speirs et al., 2013; Tramontini et al., 2014). 
Changes in nature of the stomatal response for several 
varieties were also observed as a function of water deficit 
by Levin et al. (2020) with Tempranillo being slightly more 
sensitive to changes in ΨPD than Cabernet-Sauvignon.

Direct comparison of varietal responses from different studies 
is confounded by differences in measurement methodology, 
such as leaf-level measurement of conductance by gas 
exchange versus canopy conductance by sap flow. Future 
comparisons using the same, or similar methods would lead 
to more comparable results. And while all vines measured in 
this study were subjected to the same climate conditions, the 
gbs response would be better characterized if using data from 
different years with different relative amounts of Rc, Dc and 
ΨPD. The results could also likely be different if performed in 
an overall different climate (e.g., southern Europe, or northern 
France). Even being performed in the same vineyard, the 
soil conditions around the root zone of individual vines and 
its effect on rooting volume, access to water, etc., however, 
can still be quite heterogeneous (Smart et al., 2006). 
Therefore, with only two vines per variety included in this 
study, the results could potentially be biased by the specific 
growing conditions experienced by those vines. Rootstocks  
and canopy management could also be influencing factor on 
vine conductance (Marguerit et al., 2012; Picón-Toro et al., 
2012) and should be taken into consideration.

CONCLUSIONS 

Based on data collected in a vineyard setting, a multiple 
linear regression analysis was able to quantify relationships 
across five different grapevine varieties between vine canopy 
bulk stomatal conductance (gbs) and three key environmental 
variables: net radiation absorbed by the vine canopy (Rc); 
vapour pressure deficit in the vine canopy (Dc); and predawn 
lewaf water potential (ΨPD). Depending on the variety, Dc 
and ΨPD each had about 1.5 to 3.5 times greater effect on 
gbs than Rc. Of these two more important predictors, the ΨPD 
regression coefficient was more differentiated across the five 
varieties than was the Dc coefficient. And while there was 
a significant range in Rc coefficients across varieties, their 
overall lower values mean they had less of an influence on 
the differences in gbs response across varieties compared to 
the other predictors. 

A comparison of transpiration simulated using the above 
regression results found a significant difference in the total 
growing season transpiration between varieties that appeared 
to be driven in large part by the difference across varieties 
in the effect of ΨPD on gbs. There was a general tendency 
towards greater modeled gbs (ĝbs) response, whether positive 
or negative, to changes in the predictor variables when ĝbs 
at non-limiting conditions was greater. It was also observed 
that Tempranillo puts greater emphasis on reducing its gbs in 
response to decreasing ΨPD than in response to increasing Dc 
when compared to the other varieties. These transpiration 
simulations were also compared against those from an 
accepted vineyard water balance model and found similar 
results, although there appeared to be differences between 
the two approaches in the rate at which conductance, and 
hence transpiration is reduced as a function of decreasing soil 
water content (i.e., increasing water deficit stress).

The input data needed for this type of study naturally 
contains non-linearity and collinearity, but careful selection 
of variables, transformations and filtering made for a readily 
interpretable multiple linear regression model that satisfied 
ordinary least squares assumptions. And aside from providing 
a method for quantifying the response of vine conductance 
to different environmental variables, the described approach 
may provide a basis for variety-specific modeling of the vine 
transpiration component in vineyard water balance models. 
Knowledge of such differences in gbs response could help 
with selection of varieties that are better suited for future 
changes in certain growing conditions in a region, such as the 
prevailing atmospheric vapour pressure deficits, or amount 
of precipitation and expected soil water depletions.
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