Show simple item record

dc.rights.licenseopenen_US
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorKAMRAOUI, Reda Abdellah
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorTA, Vinh-Thong
hal.structure.identifierNeurocentre Magendie : Physiopathologie de la Plasticité Neuronale [U1215 Inserm - UB]
dc.contributor.authorTOURDIAS, Thomas
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorMANSENCAL, Boris
IDREF: 228223601
hal.structure.identifierUniversitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
dc.contributor.authorMANJON, Jose V.
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorCOUPE, Pierrick
dc.date.accessioned2023-01-06T09:06:14Z
dc.date.available2023-01-06T09:06:14Z
dc.date.created2022-06-13
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/171607
dc.description.abstractEnRecently, segmentation methods based on Convolutional Neural Networks (CNNs) showed promising performance in automatic Multiple Sclerosis (MS) lesions segmentation. These techniques have even outperformed human experts in controlled evaluation conditions such as Longitudinal MS Lesion Segmentation Challenge (ISBI Challenge). However, state-of-the-art approaches trained to perform well on highly-controlled datasets fail to generalize on clinical data from unseen datasets. Instead of proposing another improvement of the segmentation accuracy, we propose a novel method robust to domain shift and performing well on unseen datasets, called DeepLesionBrain (DLB). This generalization property results from three main contributions. First, DLB is based on a large group of compact 3D CNNs. This spatially distributed strategy aims to produce a robust prediction despite the risk of generalization failure of some individual networks. Second, we propose a hierarchical specialization learning (HSL) by pre-training a generic network over the whole brain, before using its weights as initialization to locally specialized networks. By this end, DLB learns both generic features extracted at global image level and specific features extracted at local image level. Finally, DLB includes a new image quality data augmentation to reduce dependency to training data specificity (e.g., acquisition protocol). DLB generalization was validated in cross-dataset experiments on MSSEG’16, ISBI challenge, and in-house datasets. During experiments, DLB showed higher segmentation accuracy, better segmentation consistency and greater generalization performance compared to state-of-the-art methods. Therefore, DLB offers a robust framework well-suited for clinical practice. © 2021
dc.description.sponsorshipApprentissage profond pour la volumétrie cérébrale : vers le BigData en neuroscience - ANR-18-CE45-0013en_US
dc.description.sponsorshipTranslational Research and Advanced Imaging Laboratory - ANR-10-LABX-0057en_US
dc.description.sponsorshipInitiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003en_US
dc.language.isoENen_US
dc.subject.enDeep Learning
dc.subject.enConvolutional Neural Network
dc.subject.enDomain Generalization
dc.subject.enLearning Generalization
dc.subject.enLesion Segmentations
dc.subject.enMultiple Sclerose Segmentation
dc.subject.enMultiple Sclerosis
dc.subject.enMultiple Sclerosis Lesions
dc.subject.enSegmentation Accuracy
dc.subject.enConvolutional Neural Networks
dc.subject.enConvolutional Neural Network
dc.subject.enFeature Extraction
dc.subject.enImage Quality
dc.subject.enImage Segmentation
dc.subject.enPrediction
dc.subject.enThree-Dimensional Imaging
dc.subject.enBrain
dc.subject.enDiagnostic Imaging
dc.subject.enImage Processing
dc.subject.enPathology
dc.subject.enProcedures
dc.subject.enHumans
dc.subject.enComputer-Assisted
dc.subject.enNeural Networks
dc.title.enDeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation
dc.title.alternativeMed Image Analen_US
dc.typeDocument de travail - Pré-publicationen_US
dc.identifier.doi10.1016/j.media.2021.102312en_US
dc.subject.halSciences du Vivant [q-bio]/Neurosciences [q-bio.NC]en_US
bordeaux.page102312en_US
bordeaux.hal.laboratoriesNeurocentre Magendie - U1215en_US
bordeaux.institutionUniversité de Bordeauxen_US
bordeaux.institutionINSERMen_US
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.teamRelations glie-neuroneen_US
bordeaux.identifier.funderIDMinisterio de Economía y Competitividaden_US
hal.exportfalse
dc.rights.ccPas de Licence CCen_US
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.spage=102312&rft.epage=102312&rft.au=KAMRAOUI,%20Reda%20Abdellah&TA,%20Vinh-Thong&TOURDIAS,%20Thomas&MANSENCAL,%20Boris&MANJON,%20Jose%20V.&rft.genre=preprint


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record