A Plant-produced candidate subunit vaccine reduces shedding of Enterohemorrhagic <em>Escherichia col</em>i in ruminants
HUENERBERG, Martin
Lethbridge Research Development Centre
Georg-August-University = Georg-August-Universität Göttingen
Voir plus >
Lethbridge Research Development Centre
Georg-August-University = Georg-August-Universität Göttingen
HUENERBERG, Martin
Lethbridge Research Development Centre
Georg-August-University = Georg-August-Universität Göttingen
< Réduire
Lethbridge Research Development Centre
Georg-August-University = Georg-August-Universität Göttingen
Langue
en
Article de revue
Ce document a été publié dans
Biotechnology Journal. 2017, vol. 12, n° 10
Wiley-VCH Verlag
Résumé en anglais
Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the ...Lire la suite >
Enterohemorrhagic Escherichia coli (EHEC) are commonly present in the gastrointestinal tract of cattle and cause serious infectious disease in humans. Immunizing cattle against EHEC is a promising strategy to decrease the risk of food contamination; however, veterinary vaccines against EHEC such as Econiche have not been widely adopted by the agricultural industry, and have been discontinued, prompting the need for more cost-effective EHEC vaccines. The objective of this project is to develop a platform to produce plant-made antigens for oral vaccination of ruminants against EHEC. Five recombinant proteins were designed as vaccine candidates and expressed transiently in Nicotiana benthamiana and transplastomically in Nicotiana tabacum. Three of these EHEC proteins, NleA, Stx2b, and a fusion of EspA accumulated when transiently expressed. Transient protein accumulation was the highest when EHEC proteins were fused to an elastin-like polypeptide (ELP) tag. In the transplastomic lines, EspA accumulated up to 479mgkg(-1) in lyophilized leaf material. Sheep that were administered leaf tissue containing recombinant EspA shed less E. coli O157:H7 when challenged, as compared to control animals. These results suggest that plant-made, transgenic EspA has the potential to reduce EHEC shedding in ruminants.< Réduire
Mots clés
EHEC
Mots clés en anglais
E. coli O157:H7
molecular farming
oral vaccine
veterinary vaccines
Origine
Importé de halUnités de recherche