Optical manipulation of single flux quanta
VESHCHUNOV, I. S.
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Moscow Institute of Physics and Technology [Moscow] [MIPT]
MAGRINI, William
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
MIRONOV, S. V.
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Voir plus >
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
VESHCHUNOV, I. S.
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Moscow Institute of Physics and Technology [Moscow] [MIPT]
MAGRINI, William
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Laboratoire Photonique, Numérique et Nanosciences [LP2N]
MIRONOV, S. V.
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
< Réduire
Moscow Institute of Physics and Technology [Moscow] [MIPT]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Langue
en
Article de revue
Ce document a été publié dans
Nature Communications. 2016-09-28, vol. 7, p. 12801 (1-7)
Nature Publishing Group
Résumé en anglais
Magnetic field can penetrate into type-II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. ...Lire la suite >
Magnetic field can penetrate into type-II superconductors in the form of Abrikosov vortices, which are magnetic flux tubes surrounded by circulating supercurrents often trapped at defects referred to as pinning sites. Although the average properties of the vortex matter can be tuned with magnetic fields, temperature or electric currents, handling of individual vortices remains challenging and has been demonstrated only with sophisticated magnetic force, superconducting quantum interference device or strain-induced scanning local probe microscopies. Here, we introduce a far-field optical method based on local heating of the superconductor with a focused laser beam to realize a fast, precise and non-invasive manipulation of individual Abrikosov vortices, in the same way as with optical tweezers. This simple approach provides the perfect basis for sculpting the magnetic flux profile in superconducting devices like a vortex lens or a vortex cleaner, without resorting to static pinning or ratchet effects. Since a single vortex can induce a Josephson phase shift, our method also paves the way to fast optical drive of Josephson junctions, with potential massive parallelization of operations.< Réduire
Project ANR
Des nanosondes ultra-sensibles pour explorer les distributions de charges électriques dans les supraconducteurs - ANR-12-BS10-0014
Origine
Importé de halUnités de recherche