Afficher la notice abrégée

hal.structure.identifierShanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function
dc.contributor.authorMA, Q. X.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorARNEODO, A.
hal.structure.identifierShanghai Key Laboratory for Acupuncture Mechanism and Acupoint Function
dc.contributor.authorDING, G. H.
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
hal.structure.identifierLaboratoire de Physique de l'ENS Lyon [Phys-ENS]
dc.contributor.authorARGOUL, Françoise
dc.date.created2016-07-17
dc.date.issued2017
dc.identifier.issn0340-1200
dc.description.abstractEnAlteration of Na v channel functions (channe-lopathies) has been encountered in various hereditary muscle diseases. Na v channel mutations lead to aberrant excitabil-ity in skeletal muscle myotonia and paralysis. In general, these mutations disable inactivation of the Na v channel, producing either repetitive action potential firing (myotonia) or electrical dormancy (flaccid paralysis) in skeletal muscles. These " sick-excitable " cell conditions were shown to correlate with a mechanical stretch-driven left shift of the conductance factors of the two gating mechanisms of a fraction of Na v channels, which make them firing at inappropriate hyperpolarised (left-shifted) voltages. Here we elaborate on a variant of the Hodgkin–Huxley model that includes a stretch elasticity energy component in the activation and inactivation gate kinetic rates. We show that this model reproduces fairly well sick-excitable cell behaviour and can be used to predict the parameter domains where aberrant excitability or paralysis may occur. By allowing us to separate the incidences of activation and inactivation gate impairments in Na v channel excitability, this model could be a strong asset for diagnosing the origin of excitable cell disorders.
dc.language.isoen
dc.publisherSpringer Verlag
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.subject.enNa v voltage-gated channels
dc.subject.enMechanical stress
dc.subject.enDynamical systems
dc.subject.enExcitable cell disorders
dc.subject.enSick-excitable cell
dc.subject.enPeriodic firing and myotonia
dc.subject.enBifurcations
dc.title.enDynamical study of Na v channel excitability under mechanical stress
dc.typeArticle de revue
dc.identifier.doi10.1007/s00422-017-0712-3
dc.subject.halPhysique [physics]/Physique [physics]/Biophysique [physics.bio-ph]
dc.subject.halSciences du Vivant [q-bio]/Biologie cellulaire/Organisation et fonctions cellulaires [q-bio.SC]
bordeaux.journalBiological Cybernetics (Modeling)
bordeaux.page129-148
bordeaux.volume111
bordeaux.issue2
bordeaux.peerReviewedoui
hal.identifierhal-01502876
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01502876v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Biological%20Cybernetics%20(Modeling)&rft.date=2017&rft.volume=111&rft.issue=2&rft.spage=129-148&rft.epage=129-148&rft.eissn=0340-1200&rft.issn=0340-1200&rft.au=MA,%20Q.%20X.&ARNEODO,%20A.&DING,%20G.%20H.&ARGOUL,%20Fran%C3%A7oise&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée