Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms
TODESCHINI, Adrien
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
TODESCHINI, Adrien
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
CHAVENT, Marie
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Communication dans un congrès
Ce document a été publié dans
NIPS - The Neural Information Processing Systems Conference, 2013-12, South Lake Tahoe. 2013-12, vol. 26, p. 845-853
Curran Associates, Inc.
Résumé en anglais
We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this ...Lire la suite >
We propose a novel class of algorithms for low rank matrix completion. Our approach builds on novel penalty functions on the singular values of the low rank matrix. By exploiting a mixture model representation of this penalty, we show that a suitably chosen set of latent variables enables to derive an Expectation-Maximization algorithm to obtain a Maximum A Posteriori estimate of the completed low rank matrix. The resulting algorithm is an iterative soft-thresholded algorithm which iteratively adapts the shrinkage coefficients associated to the singular values. The algorithm is simple to implement and can scale to large matrices. We provide numerical comparisons between our approach and recent alternatives showing the interest of the proposed approach for low rank matrix completion.< Réduire
Origine
Importé de halUnités de recherche