An entropy preserving relaxation scheme for ten-moments equations with source terms
DUBROCA, Bruno
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
SANGAM, Afeintou
Control, Analysis and Simulations for TOkamak Research [CASTOR]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Control, Analysis and Simulations for TOkamak Research [CASTOR]
Laboratoire Jean Alexandre Dieudonné [LJAD]
DUBROCA, Bruno
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
Centre d'Etudes Lasers Intenses et Applications [CELIA]
Institut de Mathématiques de Bordeaux [IMB]
SANGAM, Afeintou
Control, Analysis and Simulations for TOkamak Research [CASTOR]
Laboratoire Jean Alexandre Dieudonné [LJAD]
< Réduire
Control, Analysis and Simulations for TOkamak Research [CASTOR]
Laboratoire Jean Alexandre Dieudonné [LJAD]
Langue
en
Article de revue
Ce document a été publié dans
Communications in Mathematical Sciences. 2015, vol. 13, n° 8, p. 2119-2154
International Press
Résumé en anglais
The present paper concerns the derivation of finite volume methods to approximate weak solutions of Ten-Moments equations with source terms. These equations model compressible anisotropic flows. A relaxation-type scheme ...Lire la suite >
The present paper concerns the derivation of finite volume methods to approximate weak solutions of Ten-Moments equations with source terms. These equations model compressible anisotropic flows. A relaxation-type scheme is proposed to approximate such flows. Both robustness and stability conditions of the suggested finite volume methods are established. To prove discrete entropy inequalities, we derive a new strategy based on local minimum entropy principle and never use some approximate PDE's auxiliary model as usually recommended. Moreover, numerical simulations in 1D and in 2D illustrate our approach.< Réduire
Mots clés en anglais
discrete entropy minimum principle AMS subject classifications 65M60
Godunov type schemes
discrete entropy inequalities
Hyperbolic system
Ten-Moments equations
source terms
65M12
Project ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche