Show simple item record

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDUBUISSON, Clément
dc.date.created2015-02
dc.description.abstractEnFor $s>0$, let $H_0=(-\Delta)^s$ be the fractional Laplacian. In this paper, we obtainLieb-Thirring type inequalities for the fractional Schr\"odinger operator defined as $H=H_0+V$,where $V \in L^p(\mathbb{R}^d), p\ge 1, d\ge 1,$ is a complex-valued potential.Our methods are based on results of articles by Borichev-Golinskii-Kupin \cite{BoGoKu} and Hansmann \cite{Ha1}.
dc.language.isoen
dc.subject.enFractional Schrödinger operator
dc.subject.encomplex perturbation
dc.subject.endiscrete spectrum
dc.subject.enLieb-Thirring type inequality
dc.subject.enconformal mapping
dc.title.enNotes on Lieb-Thirring type inequality for a complex perturbation of fractional Schrödinger operator.
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.identifier.arxiv1403.5116
hal.identifierhal-00959766
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00959766v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=DUBUISSON,%20Cl%C3%A9ment&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record