Cyclicity in the harmonic Dirichlet space
Langue
en
Communication dans un congrès
Ce document a été publié dans
Theta Series in Advanced Mathematics., Theta Series in Advanced Mathematics., Conference on Harmonic and Functional, Analysis, Operator Theory and Applications. 1–10, Theta Ser. Adv. Math., 19, Theta, Bucharest, 2017., 2015-06-04, Bordeaux.
Résumé en anglais
The harmonic Dirichlet space $\cD(\TT)$ is the Hilbert space of functions $f\in L^2(\TT)$ such that$$\|f\|_{\cD(\TT)}^2:=\sum_{n\in\ZZ}(1+|n|)|\hat{f}(n)|^2<\infty.$$We give sufficient conditions for $f$ to be cyclic in ...Lire la suite >
The harmonic Dirichlet space $\cD(\TT)$ is the Hilbert space of functions $f\in L^2(\TT)$ such that$$\|f\|_{\cD(\TT)}^2:=\sum_{n\in\ZZ}(1+|n|)|\hat{f}(n)|^2<\infty.$$We give sufficient conditions for $f$ to be cyclic in $\cD (\TT)$, in other words, for $\{\zeta ^nf(\zeta):\ n\geq 0\}$ to span a dense subspace of $\cD(\TT)$.< Réduire
Mots clés en anglais
cyclic vectors
capacity
Harmonic Dirichlet space
Origine
Importé de halUnités de recherche