Squares of Random Linear Codes
MIRANDOLA, Diego
Institut de Mathématiques de Bordeaux [IMB]
Centrum voor Wiskunde en Informatica [CWI]
Universiteit Leiden = Leiden University
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Centrum voor Wiskunde en Informatica [CWI]
Universiteit Leiden = Leiden University
MIRANDOLA, Diego
Institut de Mathématiques de Bordeaux [IMB]
Centrum voor Wiskunde en Informatica [CWI]
Universiteit Leiden = Leiden University
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centrum voor Wiskunde en Informatica [CWI]
Universiteit Leiden = Leiden University
Langue
en
Article de revue
Ce document a été publié dans
IEEE Transactions on Information Theory. 2015, vol. 61, n° 3, p. 1159-1173
Institute of Electrical and Electronics Engineers
Résumé en anglais
Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following ...Lire la suite >
Given a linear code $C$, one can define the $d$-th power of $C$ as the span of all componentwise products of $d$ elements of $C$. A power of $C$ may quickly fill the whole space. Our purpose is to answer the following question: does the square of a code "typically" fill the whole space? We give a positive answer, for codes of dimension $k$ and length roughly $\frac{1}{2}k^2$ or smaller. Moreover, the convergence speed is exponential if the difference $k(k+1)/2-n$ is at least linear in $k$. The proof uses random coding and combinatorial arguments, together with algebraic tools involving the precise computation of the number of quadratic forms of a given rank, and the number of their zeros.< Réduire
Origine
Importé de halUnités de recherche