Certification de représentations galoisiennes modulaires
MASCOT, Nicolas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
MASCOT, Nicolas
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Mathematics of Computation. 2018, vol. 87, n° 309, p. 381–423
American Mathematical Society
Résumé en anglais
We show how the output of the algorithm to compute modular Galois representations described in our previous article can be certified. We have used this process to compute certified tables of such Galois representations ...Lire la suite >
We show how the output of the algorithm to compute modular Galois representations described in our previous article can be certified. We have used this process to compute certified tables of such Galois representations obtained thanks to an improved version of this algorithm, including representations modulo primes up to 31 and representations attached to a newform with non-rational (but of course algebraic) coefficients, which had never been done before. These computations take place in the Jacobian of modular curves of genus up to 26. The resulting data are available on the author's webpage.< Réduire
Mots clés en anglais
Galois representations
Certification
Effective Galois theory
Group cohomology
Origine
Importé de halUnités de recherche