On sets represented by partitions
AVAL, Jean-Christophe
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AVAL, Jean-Christophe
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Article de revue
Ce document a été publié dans
European Journal of Combinatorics. 1999, vol. 20, p. 317-320
Elsevier
Résumé en anglais
We prove a lemma that is useful to get upper bounds for the number of partitions without a given subsum. From this we can deduce an improved upper bound for the number of sets represented by the (unrestricted or into unequal ...Lire la suite >
We prove a lemma that is useful to get upper bounds for the number of partitions without a given subsum. From this we can deduce an improved upper bound for the number of sets represented by the (unrestricted or into unequal parts) partitions of an integer n.< Réduire
Origine
Importé de halUnités de recherche