Show simple item record

hal.structure.identifierThéorie des Nombres et Algorithmique Arithmétique [A2X]
hal.structure.identifierLaboratoire Bordelais de Recherche en Informatique [LaBRI]
dc.contributor.authorAVAL, Jean-Christophe
dc.date.created1999
dc.date.issued2000
dc.date.conference1999
dc.description.abstractEnThe aim of this work is to construct a monomial and explicit basis for the space $M_{\mu}$ relative to the $n!$ conjecture. We succeed completely for hook-shaped partitions, i.e. $\mu=(K+1,1^L)$. We are indeed able to exhibit a basis and to verify that its cardinality is $n!$, that it is linearly independent and that it spans $M_{\mu}$. We deduce from this study an explicit and simple basis for $I_{\mu}$, the annulator ideal of $\Delta_{\mu}$. This method is also successful for giving directly a basis for the homogeneous subspace of $M_{\mu}$ consisting of elements of $0$ $x$-degree.
dc.language.isofr
dc.publisherSpringer-Verlag
dc.source.titleFormal Power Series and Algebraic Combinatorics
dc.titleBases explicites et conjecture n!
dc.typeCommunication dans un congrès avec actes
dc.subject.halMathématiques [math]/Combinatoire [math.CO]
dc.identifier.arxiv0711.0899
bordeaux.page103-112
bordeaux.countryRU
bordeaux.title.proceedingFormal Power Series and Algebraic Combinatorics
bordeaux.conference.cityMoscou
bordeaux.peerReviewedoui
hal.identifierhal-00185520
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00185520v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=Bases%20explicites%20et%20conjecture%20n!&rft.btitle=Formal%20Power%20Series%20and%20Algebraic%20Combinatorics&rft.atitle=Bases%20explicites%20et%20conjecture%20n!&rft.date=2000&rft.spage=103-112&rft.epage=103-112&rft.au=AVAL,%20Jean-Christophe&rft.genre=proceeding


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record