Bases explicites et conjecture n!
AVAL, Jean-Christophe
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
AVAL, Jean-Christophe
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Théorie des Nombres et Algorithmique Arithmétique [A2X]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
fr
Communication dans un congrès avec actes
Ce document a été publié dans
Formal Power Series and Algebraic Combinatorics, Formal Power Series and Algebraic Combinatorics, 1999, Moscou. 2000p. 103-112
Springer-Verlag
Résumé en anglais
The aim of this work is to construct a monomial and explicit basis for the space $M_{\mu}$ relative to the $n!$ conjecture. We succeed completely for hook-shaped partitions, i.e. $\mu=(K+1,1^L)$. We are indeed able to ...Lire la suite >
The aim of this work is to construct a monomial and explicit basis for the space $M_{\mu}$ relative to the $n!$ conjecture. We succeed completely for hook-shaped partitions, i.e. $\mu=(K+1,1^L)$. We are indeed able to exhibit a basis and to verify that its cardinality is $n!$, that it is linearly independent and that it spans $M_{\mu}$. We deduce from this study an explicit and simple basis for $I_{\mu}$, the annulator ideal of $\Delta_{\mu}$. This method is also successful for giving directly a basis for the homogeneous subspace of $M_{\mu}$ consisting of elements of $0$ $x$-degree.< Réduire
Origine
Importé de halUnités de recherche