Emergent Strain Stiffening in Interlocked Granular Chains
hal.structure.identifier | Laboratoire Interfaces et Fluides Complexes [Mons] [LIFC] | |
dc.contributor.author | DUMONT, Denis | |
hal.structure.identifier | Laboratoire Interfaces et Fluides Complexes [Mons] [LIFC] | |
dc.contributor.author | HOUZE, Maurine | |
hal.structure.identifier | Laboratoire Interfaces et Fluides Complexes [Mons] [LIFC] | |
hal.structure.identifier | Laboratoire de Physico-Chimie Théorique [LPCT] | |
dc.contributor.author | RAMBACH, Paul | |
hal.structure.identifier | Laboratoire de Physico-Chimie Théorique [LPCT] | |
hal.structure.identifier | Laboratoire Ondes et Matière d'Aquitaine [LOMA] | |
hal.structure.identifier | Hokkaido University [Sapporo, Japan] | |
dc.contributor.author | SALEZ, Thomas | |
hal.structure.identifier | Physique et mécanique des milieux hétérogènes [PMMH] | |
dc.contributor.author | PATINET, Sylvain | |
hal.structure.identifier | Laboratoire Interfaces et Fluides Complexes [Mons] [LIFC] | |
dc.contributor.author | DAMMAN, Pascal | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0031-9007 | |
dc.description.abstractEn | Granular chain packings exhibit a striking emergent strain-stiffening behavior despite the individual looseness of the constitutive chains. Using indentation experiments on such assemblies, we measure an exponential increase in the collective resistance force F with the indentation depth z and with the square root of the number N of beads per chain. These two observations are, respectively, reminiscent of the self-amplification of friction in a capstan or in interleaved books, as well as the physics of polymers. The experimental data are well captured by a novel model based on these two ingredients. Specifically, the resistance force is found to vary according to the universal relation log F ∼ μ √N Φ^11/8 z/b, where μ is the friction coefficient between two elementary beads, b is their size, and Φ is the volume fraction of chain beads when semidiluted in a surrounding medium of unconnected beads. Our study suggests that theories normally confined to the realm of polymer physics at a molecular level can be used to explain phenomena at a macroscopic level. This class of systems enables the study of friction in complex assemblies, with practical implications for the design of new materials, the textile industry, and biology. | |
dc.language.iso | en | |
dc.publisher | American Physical Society | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.title.en | Emergent Strain Stiffening in Interlocked Granular Chains | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1103/PhysRevLett.120.088001 | |
dc.subject.hal | Physique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph] | |
dc.subject.hal | Physique [physics]/Matière Condensée [cond-mat] | |
dc.identifier.arxiv | 1707.08547 | |
bordeaux.journal | Physical Review Letters | |
bordeaux.page | 088001 | |
bordeaux.volume | 120 | |
bordeaux.issue | 8 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-01803414 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-01803414v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Letters&rft.date=2018&rft.volume=120&rft.issue=8&rft.spage=088001&rft.epage=088001&rft.eissn=0031-9007&rft.issn=0031-9007&rft.au=DUMONT,%20Denis&HOUZE,%20Maurine&RAMBACH,%20Paul&SALEZ,%20Thomas&PATINET,%20Sylvain&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |