Show simple item record

hal.structure.identifierLaboratoire Interfaces et Fluides Complexes [Mons] [LIFC]
dc.contributor.authorDUMONT, Denis
hal.structure.identifierLaboratoire Interfaces et Fluides Complexes [Mons] [LIFC]
dc.contributor.authorHOUZE, Maurine
hal.structure.identifierLaboratoire Interfaces et Fluides Complexes [Mons] [LIFC]
hal.structure.identifierLaboratoire de Physico-Chimie Théorique [LPCT]
dc.contributor.authorRAMBACH, Paul
hal.structure.identifierLaboratoire de Physico-Chimie Théorique [LPCT]
hal.structure.identifierLaboratoire Ondes et Matière d'Aquitaine [LOMA]
hal.structure.identifierHokkaido University [Sapporo, Japan]
dc.contributor.authorSALEZ, Thomas
hal.structure.identifierPhysique et mécanique des milieux hétérogènes [PMMH]
dc.contributor.authorPATINET, Sylvain
hal.structure.identifierLaboratoire Interfaces et Fluides Complexes [Mons] [LIFC]
dc.contributor.authorDAMMAN, Pascal
dc.date.issued2018
dc.identifier.issn0031-9007
dc.description.abstractEnGranular chain packings exhibit a striking emergent strain-stiffening behavior despite the individual looseness of the constitutive chains. Using indentation experiments on such assemblies, we measure an exponential increase in the collective resistance force F with the indentation depth z and with the square root of the number N of beads per chain. These two observations are, respectively, reminiscent of the self-amplification of friction in a capstan or in interleaved books, as well as the physics of polymers. The experimental data are well captured by a novel model based on these two ingredients. Specifically, the resistance force is found to vary according to the universal relation log F ∼ μ √N Φ^11/8 z/b, where μ is the friction coefficient between two elementary beads, b is their size, and Φ is the volume fraction of chain beads when semidiluted in a surrounding medium of unconnected beads. Our study suggests that theories normally confined to the realm of polymer physics at a molecular level can be used to explain phenomena at a macroscopic level. This class of systems enables the study of friction in complex assemblies, with practical implications for the design of new materials, the textile industry, and biology.
dc.language.isoen
dc.publisherAmerican Physical Society
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.title.enEmergent Strain Stiffening in Interlocked Granular Chains
dc.typeArticle de revue
dc.identifier.doi10.1103/PhysRevLett.120.088001
dc.subject.halPhysique [physics]/Physique [physics]/Chimie-Physique [physics.chem-ph]
dc.subject.halPhysique [physics]/Matière Condensée [cond-mat]
dc.identifier.arxiv1707.08547
bordeaux.journalPhysical Review Letters
bordeaux.page088001
bordeaux.volume120
bordeaux.issue8
bordeaux.peerReviewedoui
hal.identifierhal-01803414
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01803414v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physical%20Review%20Letters&rft.date=2018&rft.volume=120&rft.issue=8&rft.spage=088001&rft.epage=088001&rft.eissn=0031-9007&rft.issn=0031-9007&rft.au=DUMONT,%20Denis&HOUZE,%20Maurine&RAMBACH,%20Paul&SALEZ,%20Thomas&PATINET,%20Sylvain&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record