From a formula of Kovarik to the parametrization of idempotents in Banach algebra.
hal.structure.identifier | Laboratoire Bordelais d'Analyse et Géométrie [LaBAG] | |
dc.contributor.author | GIOL, Julien | |
dc.date.issued | 2007 | |
dc.description.abstractEn | If p,q are idempotents in a Banach algebra A and if p+q-1 is invertible, then the Kovarik formula provides an idempotent k(p,q) such that pA=k(p,q)A and Aq=Ak(p,q). We study the existence of such an element in a more general situation. We first show that p+q-1 is invertible if and only if k(p,q) and k(q,p) both exist. Then we deduce a local parametrization of the set of idempotents from this equivalence. Finally, we consider a polynomial parametrization first introduced by Holmes and we answer a question raised at the end of his paper. | |
dc.language.iso | en | |
dc.title.en | From a formula of Kovarik to the parametrization of idempotents in Banach algebra. | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Analyse fonctionnelle [math.FA] | |
bordeaux.journal | Illinois Journal of Mathematics | |
bordeaux.page | 429-444 | |
bordeaux.volume | 51 | |
bordeaux.issue | 2 | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00288818 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00288818v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Illinois%20Journal%20of%20Mathematics&rft.date=2007&rft.volume=51&rft.issue=2&rft.spage=429-444&rft.epage=429-444&rft.au=GIOL,%20Julien&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |