Combined finite element - particles discretisation for simulation of transport-dispersion in porous media
BEAUGENDRE, Héloïse
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
ERN, Alexandre
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
BEAUGENDRE, Héloïse
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
ERN, Alexandre
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
< Réduire
Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique [CERMICS]
Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique [CERMICS]
Langue
en
Communication dans un congrès
Ce document a été publié dans
ICCFD5, 2008-07-07, Séoul. 2008
Résumé en anglais
Combining finite element together with particle methods provide one of the best compromise for solving transport problem in porous media. Saturated or non-saturated flows are determined by boundary condition and the media ...Lire la suite >
Combining finite element together with particle methods provide one of the best compromise for solving transport problem in porous media. Saturated or non-saturated flows are determined by boundary condition and the media permeability.\footnote{This work was partially supported by GDR MOMAS-CNRS} For real terrain, permeability can consist in various almost constant and imbricated zones with complex shapes. Thus, it is of some interest that the boundary between two adjacent zones coincides with a natural mesh interface and that each element is entirely contains in one such zone. Beside this, solving transport equation by means of particle methods offers two distinctive advantages. The method is unconditionally stable when applied to a pure convective equation, and it does not contain any numerical diffusion if the particle trajectories are correctly computed. Therefore the combination of finite elements and particle method appears to be a straightforward application of the principle : "the right method at the right place".< Réduire
Mots clés en anglais
finite element
particles methods
transport-dispersion in porous media
Origine
Importé de halUnités de recherche