Show simple item record

hal.structure.identifierLaboratoire Bordelais d'Analyse et Géométrie [LaBAG]
dc.contributor.authorGENDULPHE, Matthieu
dc.description.abstractEnWe determine optimal inequalities for the systole of all hyperbolic compact surfaces of caracteristic -1. First, we study the geometry and topology of these surfaces. Then, we describe the action of modular groups on Teichmüller spaces. Finaly, we give cell decompositions of fundamental domains such as the set of systoles is constant over a cell. Other optimal inequalities for other metric invariants are also given.
dc.language.isofr
dc.subjectsystoles
dc.subjectespaces de Teichmüller
dc.subjectsurfaces de Klein
dc.titlePAYSAGE SYSTOLIQUE DES SURFACES HYPERBOLIQUES COMPACTES DE CARACTERISTIQUE -1
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.identifier.arxivmath.DG/0508036
hal.identifierhal-00007725
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00007725v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.title=PAYSAGE%20SYSTOLIQUE%20DES%20SURFACES%20HYPERBOLIQUES%20COMPACTES%20DE%20CARACTERISTIQUE%20-1&rft.atitle=PAYSAGE%20SYSTOLIQUE%20DES%20SURFACES%20HYPERBOLIQUES%20COMPACTES%20DE%20CARACTERISTIQUE%20-1&rft.au=GENDULPHE,%20Matthieu&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record