Modular Curves of Composite Level
| hal.structure.identifier | Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX] | |
| hal.structure.identifier | Algorithmic number theory for cryptology [TANC] | |
| dc.contributor.author | ENGE, Andreas | |
| hal.structure.identifier | Institut für Mathematik [Augsburg] | |
| dc.contributor.author | SCHERTZ, Reinhard | |
| dc.date.issued | 2005 | |
| dc.description.abstractEn | We examine a class of functions on $X_0 (N)$ where $N$ is the product of two arbitrary primes. The functions are built as products of Dedekind's $\eta$-function and play a role in the construction of elliptic curves with complex multiplication. We show how to determine the modular polynomials relating them to the absolute modular invariant $j$ and prove different properties of these polynomials. In particular, we show that they provide models for the modular curves $X_0 (N)$. | |
| dc.language.iso | en | |
| dc.publisher | Instytut Matematyczny PAN | |
| dc.title.en | Modular Curves of Composite Level | |
| dc.type | Article de revue | |
| dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
| bordeaux.journal | Acta Arithmetica | |
| bordeaux.page | 129-141 | |
| bordeaux.volume | 118 | |
| bordeaux.issue | 2 | |
| bordeaux.peerReviewed | oui | |
| hal.identifier | inria-00386309 | |
| hal.version | 1 | |
| hal.origin.link | https://hal.archives-ouvertes.fr//inria-00386309v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Arithmetica&rft.date=2005&rft.volume=118&rft.issue=2&rft.spage=129-141&rft.epage=129-141&rft.au=ENGE,%20Andreas&SCHERTZ,%20Reinhard&rft.genre=article |
Files in this item
| Files | Size | Format | View |
|---|---|---|---|
|
There are no files associated with this item. |
|||