Modular Curves of Composite Level
ENGE, Andreas
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
ENGE, Andreas
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
< Réduire
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Algorithmic number theory for cryptology [TANC]
Langue
en
Article de revue
Ce document a été publié dans
Acta Arithmetica. 2005, vol. 118, n° 2, p. 129-141
Instytut Matematyczny PAN
Résumé en anglais
We examine a class of functions on $X_0 (N)$ where $N$ is the product of two arbitrary primes. The functions are built as products of Dedekind's $\eta$-function and play a role in the construction of elliptic curves with ...Lire la suite >
We examine a class of functions on $X_0 (N)$ where $N$ is the product of two arbitrary primes. The functions are built as products of Dedekind's $\eta$-function and play a role in the construction of elliptic curves with complex multiplication. We show how to determine the modular polynomials relating them to the absolute modular invariant $j$ and prove different properties of these polynomials. In particular, we show that they provide models for the modular curves $X_0 (N)$.< Réduire
Origine
Importé de halUnités de recherche