Convergence of U-statistics for interacting particle systems
DEL MORAL, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
DEL MORAL, Pierre
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Langue
en
Rapport
Ce document a été publié dans
2009p. 20
Résumé en anglais
The convergence of U-statistics has been intensively studied for estimators based on families of i.i.d. random variables and variants of them. In most cases, the independence assumption is crucial. When dealing with ...Lire la suite >
The convergence of U-statistics has been intensively studied for estimators based on families of i.i.d. random variables and variants of them. In most cases, the independence assumption is crucial. When dealing with Feynman-Kac and other interacting particle systems of Monte Carlo type, one faces a new type of problem. Namely, in a sample of N particles obtained through the corresponding algorithms, the distributions of the particles are correlated -although any finite number of them is asymptotically independent with respect to the total number N of particles. In the present article, exploiting the fine asymptotics of particle systems, we prove convergence theorems for U-statistics in this framework.< Réduire
Project ANR
Sécurité et fiabilité des techniques de tatouages - ANR-06-SETI-0009
Origine
Importé de halUnités de recherche