On the asymptotic behavior of the Nadaraya-Watson estimator associated with the recursive SIR method
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
MONG NGOC NGUYEN, Thi
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
BERCU, Bernard
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
MONG NGOC NGUYEN, Thi
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
SARACCO, Jérôme
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Langue
en
Article de revue
Ce document a été publié dans
Statistics. 2014p. 17
Taylor & Francis: STM, Behavioural Science and Public Health Titles
Résumé en anglais
We investigate the asymptotic behavior of the Nadaraya-Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced ...Lire la suite >
We investigate the asymptotic behavior of the Nadaraya-Watson estimator for the estimation of the regression function in a semiparametric regression model. On the one hand, we make use of the recursive version of the sliced inverse regression method for the estimation of the unknown parameter of the model. On the other hand, we implement a recursive Nadaraya-Watson procedure for the estimation of the regression function which takes into account the previous estimation of the parameter of the semiparametric regression model. We establish the almost sure convergence as well as the asymptotic normality for our Nadaraya-Watson estimator. We also illustrate our semiparametric estimation procedure on simulated data.< Réduire
Mots clés en anglais
Semi-parametric regression
recursive estimation
Nadaraya-Watson estimator
Sliced inversion regression
Origine
Importé de halUnités de recherche