Two-sample Bayesian nonparametric hypothesis testing
CARON, Francois
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
CARON, Francois
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Rapport
Ce document a été publié dans
2009
Résumé en anglais
In this article we describe Bayesian nonparametric procedures for two-sample hypothesis testing. Namely, given two sets of samples y^{(1)} iid F^{(1)} and y^{(2)} iid F^{(2)}, with F^{(1)}, F^{(2)} unknown, we wish to ...Lire la suite >
In this article we describe Bayesian nonparametric procedures for two-sample hypothesis testing. Namely, given two sets of samples y^{(1)} iid F^{(1)} and y^{(2)} iid F^{(2)}, with F^{(1)}, F^{(2)} unknown, we wish to evaluate the evidence for the null hypothesis H_{0}:F^{(1)} = F^{(2)} versus the alternative. Our method is based upon a nonparametric Polya tree prior centered either subjectively or using an empirical procedure. We show that the Polya tree prior leads to an analytic expression for the marginal likelihood under the two hypotheses and hence an explicit measure of the probability of the null Pr(H_{0}|y^{(1)},y^{(2)}).< Réduire
Origine
Importé de halUnités de recherche