Breakdown of coherence in Kondo alloys: crucial role of concentration versus band filling
Langue
en
Article de revue
Ce document a été publié dans
Journal of Physics: Condensed Matter. 2019-10-02, vol. 31, n° 39, p. 395601
IOP Publishing
Résumé en anglais
We study the low energy states of the Kondo alloy model (KAM) as function of the magnetic impurity concentration per site, x, and the conduction electron average site occupation, nc. In previous works, two different Fermi ...Lire la suite >
We study the low energy states of the Kondo alloy model (KAM) as function of the magnetic impurity concentration per site, x, and the conduction electron average site occupation, nc. In previous works, two different Fermi liquid regimes had been identified at strong Kondo coupling JK , that may be separated by a transition at x = nc. Here, we analyze the KAM for finite JK on a Bethe lattice structure. First, using the mean-field coherent potential approximation (DMFT-CPA) which is exact at lattice coordination Z = ∞, we show that the real part of the local potential scattering may be located outside the conduction electron band, revealing a possible breakdown of Luttinger theorem for intermediate values of impurity concentration x. Unusual physical signatures are expected, e.g., in ARPES experiments. In order to take into account fluctuations associated with finite dimensionality, i.e. finite Z, we extend this analysis by studying the KAM with an adaptation of the statistical-DMFT method that was developped elsewhere. We review the distributions of local potential scattering and their evolution with model parameters: concentration, strength of Kondo coupling, coordination number, local site neighborhood, connection with percolation issue. Relevence for Kondo alloys material with f-electrons is also discussed.< Réduire
Project ANR
Topologie de surfaces de Fermi et émergence de nouveaux états électroniques dans des systèmes fortement corrélés - ANR-16-CE92-0018
Origine
Importé de halUnités de recherche