Feynman-Kac particle integration with geometric interacting jumps
DEL MORAL, Pierre
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
JACOB, Pierre E.
Centre de Recherche en Économie et Statistique [CREST]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Voir plus >
Centre de Recherche en Économie et Statistique [CREST]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
DEL MORAL, Pierre
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
Advanced Learning Evolutionary Algorithms [ALEA]
Institut de Mathématiques de Bordeaux [IMB]
JACOB, Pierre E.
Centre de Recherche en Économie et Statistique [CREST]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
< Réduire
Centre de Recherche en Économie et Statistique [CREST]
CEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model, corresponding to whether the ...Lire la suite >
This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model, corresponding to whether the reference process is in continuous or discrete time. For the former, we consider discrete generation particle models defined by arbitrarily fine time mesh approximations of the Feynman-Kac models with continuous time path integrals. For the latter, we assume that the discrete process is observed at integer times and we design new approximation models with geometric interacting jumps in terms of a sequence of intermediate time steps between the integers. In both situations, we provide non asymptotic bias and variance theorems w.r.t. the time step and the size of the system, yielding what appear to be the first results of this type for this class of Feynman-Kac particle integration models. We also discuss uniform convergence estimates w.r.t. the time horizon. Our approach is based on an original semigroup analysis with first order decompositions of the fluctuation errors.< Réduire
Origine
Importé de halUnités de recherche