Influence of periodic diffusive inclusions on the bidomain model
DAVIDOVIC, Andjela
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
DAVIDOVIC, Andjela
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Autre communication scientifique (congrès sans actes - poster - séminaire...)
Ce document a été publié dans
Workshop Liryc, 2013, Bordeaux.
Résumé en anglais
We present a new mathematical model of the electric activity of the heart. In the standard bidomain model we can distinguish the intra- and the extracellular space with different conductivities for excitable cells and the ...Lire la suite >
We present a new mathematical model of the electric activity of the heart. In the standard bidomain model we can distinguish the intra- and the extracellular space with different conductivities for excitable cells and the fibrotic tissue around them. The main drawback is that it assumes the existence of excitable cells everywhere in the heart, while it is known that there exist non small regions where fibroblasts take place. The fibroblasts are equally distributed and since they are non excitable cells, they can be considered as a diffusive part. Hence we extend the standard bidomain model as follows: we assume that we have periodic alternation of the healthy tissue (linear bidomain model) and fibrotic extracellular space (diffusive part). We use homogenization techniques to derive our macroscopic partial differential equations. Interestingly, we obtain again a bidomain type model with modified conductivities that involve the volume fraction of the diffusive domain. Preliminary numerical experiments will conclude on the influence of these diffusive inclusions.< Réduire
Origine
Importé de halUnités de recherche