Schwinger boson theory of the J1,J2=J3 kagome antiferromagnet
JAUBERT, L.D.C.
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Voir plus >
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
JAUBERT, L.D.C.
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
< Réduire
Centre National de la Recherche Scientifique [CNRS]
Laboratoire Ondes et Matière d'Aquitaine [LOMA]
Langue
en
Article de revue
Ce document a été publié dans
Physical Review B. 2022-10-12, vol. 106, p. L140404
American Physical Society
Résumé en anglais
We study the kagome antiferromagnet for quantum spin-1/2 with first J1, second J2 and third J3 neighbour exchanges, along the J2 = J3 = J line. We use Schwinger-boson mean-field theory for the precise determination of the ...Lire la suite >
We study the kagome antiferromagnet for quantum spin-1/2 with first J1, second J2 and third J3 neighbour exchanges, along the J2 = J3 = J line. We use Schwinger-boson mean-field theory for the precise determination of the phase diagram, and two different rewritings of the Hamiltonian to build an intuition about the origin of the transitions. The spin liquid obtained at J = 0 remains essentially stable over a large window, up to J = 1/3, because it is only weakly frustrated by the J term. Then at J = 1/2, the intermediate Z2 spin liquid condenses into a long-range chiral order because of the change of nature of local magnetic fluctuations. As a side benefit, our Hamiltonian rewriting offers an exact solution for the ground state of our model on a Husimi cactus.< Réduire
Project ANR
Design de la frustration: effets de surface et désordre - ANR-18-CE30-0011
Origine
Importé de halUnités de recherche