Fast construction of the Kohn--Sham response function for molecules}
KOVAL, Peter
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
COULAUD, Olivier
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
KOVAL, Peter
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
COULAUD, Olivier
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Trends in nanotechnology - TNT 2009, 2009-09-07, Barcelona. 2009
Résumé en anglais
The use of the LCAO (Linear Combination of Atomic Orbitals) method for excited states involves products of orbitals that are known to be linearly dependent. We identify a basis in the space of orbital products that is local ...Lire la suite >
The use of the LCAO (Linear Combination of Atomic Orbitals) method for excited states involves products of orbitals that are known to be linearly dependent. We identify a basis in the space of orbital products that is local for orbitals of finite support and with a residual error that vanishes exponentially with its dimension. As an application of our previously reported technique we compute the Kohn--Sham density response function $\chi_{0}$ for a molecule consisting of $N$ atoms in $N^{2}N_{\omega }$ operations, with $N_{\omega}$ the number of frequency points. We test our construction of $\chi_{0}$ by computing molecular spectra directly from the equations of Petersilka--Gossmann--Gross in $N^{2}N_{\omega }$ operations rather than from Casida's equations which takes $N^{3}$ operations. We consider the good agreement with previously calculated molecular spectra as a validation of our construction of $\chi_{0}$. Ongoing work indicates that our method is well suited for the computation of the GW self-energy $\Sigma=\mathrm{i}GW$ and we expect it to be useful in the analysis of exitonic effects in molecules.< Réduire
Mots clés en anglais
Kohn-Sham response function
absorption spectra
Time-dependent density functional theory (TDDFT)
basis of dominant products
Project ANR
Nouveaux Outils pour la Smulation des Solides et Interfaces - ANR-07-CIS7-0005
Origine
Importé de halUnités de recherche