A Parallel Iterative Method for Computing Molecular Absorption Spectra
KOVAL, Peter
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
COULAUD, Olivier
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
KOVAL, Peter
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
COULAUD, Olivier
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
High-End Parallel Algorithms for Challenging Numerical Simulations [HiePACS]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Chemical Theory and Computation. 2010, vol. 6, n° 9, p. 2654-2668
American Chemical Society
Résumé en anglais
We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital ...Lire la suite >
We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamical polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about one order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.< Réduire
Project ANR
Nouveaux Outils pour la Smulation des Solides et Interfaces - ANR-07-CIS7-0005
Origine
Importé de halUnités de recherche