Mostrar el registro sencillo del ítem

hal.structure.identifierElectronic Engineering Department
dc.contributor.authorALDRETE-VIDRIO, Eduardo
hal.structure.identifierElectronic Engineering Department
dc.contributor.authorMATEO, Diego
hal.structure.identifierElectronic Engineering Department
dc.contributor.authorALTET, Josep
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorSALHI, M. Amine
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorGRAUBY, Stéphane
hal.structure.identifierCentre de physique moléculaire optique et hertzienne [CPMOH]
dc.contributor.authorDILHAIRE, Stefan
hal.structure.identifierAnalog and Mixed Signal Center [AMSC]
dc.contributor.authorONABAJO, Marvin
hal.structure.identifierAnalog and Mixed Signal Center [AMSC]
dc.contributor.authorSILVA-MARTINEZ, Jose
dc.date.created2009-12-23
dc.date.issued2010-06-08
dc.identifier.issn0957-0233
dc.description.abstractEnThis paper presents two approaches to characterize RF circuits with built-in differential temperature measurements, namely the homodyne and heterodyne methods. Both non-invasive methods are analyzed theoretically and discussed with regard to the respective trade-offs associated with practical off-chip methodologies as well as on-chip measurement scenarios. Strategies are defined to extract the center frequency and 1 dB compression point of a narrow-band LNA operating around 1 GHz. The proposed techniques are experimentally demonstrated using a compact and efficient on-chip temperature sensor for built-in test purposes that has a power consumption of 15 μW and a layout area of 0.005 mm2 in a 0.25 μm CMOS technology. Validating results from off-chip interferometer-based temperature measurements and conventional electrical characterization results are compared with the on-chip measurements, showing the capability of the techniques to estimate the center frequency and 1 dB compression point of the LNA with errors of approximately 6% and 0.5 dB, respectively.
dc.language.isoen
dc.publisherIOP Publishing
dc.subject.enintegrated circuits
dc.subject.enRF analog circuits
dc.subject.enlow-noise amplifier
dc.subject.enCMOS differential temperature sensors
dc.subject.enMichelson interferometer
dc.subject.enhomodyne method
dc.subject.enheterodyne method
dc.subject.enanalog circuits characterization
dc.subject.enRF built-in test
dc.title.enStrategies for built-in characterization testing and performance monitoring of analog RF circuits with temperature measurements
dc.typeArticle de revue
dc.identifier.doi10.1088/0957-0233/21/7/075104
bordeaux.journalMeasurement Science and Technology
bordeaux.page075104 (10)
bordeaux.volume21
bordeaux.issue7
bordeaux.peerReviewedoui
hal.identifierhal-00609286
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00609286v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Measurement%20Science%20and%20Technology&rft.date=2010-06-08&rft.volume=21&rft.issue=7&rft.spage=075104%20(10)&rft.epage=075104%20(10)&rft.eissn=0957-0233&rft.issn=0957-0233&rft.au=ALDRETE-VIDRIO,%20Eduardo&MATEO,%20Diego&ALTET,%20Josep&SALHI,%20M.%20Amine&GRAUBY,%20St%C3%A9phane&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem