Afficher la notice abrégée

hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorYANG, Ming
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorDEFOSSEZ, Pauline
hal.structure.identifierBiodiversité, Gènes & Communautés [BioGeCo]
dc.contributor.authorDANJON, Frederic
hal.structure.identifierInteractions Sol Plante Atmosphère [UMR ISPA]
dc.contributor.authorDUPONT, Sylvain
hal.structure.identifierBotanique et Modélisation de l'Architecture des Plantes et des Végétations [UMR AMAP]
dc.contributor.authorFOURCAUD, Thierry
dc.date.issued2017
dc.identifier.issn0032-079X
dc.description.abstractEnBackground and Aims Root anchorage function is crucial for tree survival as most trees are exposed to recurrent wind throughout their lifespan. Trees exhibit a large variability of root system architecture (RSA) due genetic and environmental factors. This study aims to understand the links between RSA and tree stability.Methods A 3D biomechanical model was used to simulate tree overturning. To capture the variability of sinker RSA, fourteen virtual root patterns were created from an ensemble average of measured Pinus pinaster root systems. Root virtual patterns and tree-pulling simulations were verified against experimental data.Results The model predicts realistic tree anchorage strength, root stress, and failure patterns. Only a few root components contribute significantly to anchorage strength. The taproot contributes the most to anchorage rigidity, representing 61 % of the anchorage strength. The windward roots failure drives ultimate anchorage failure, representing 25 % of the anchorage strength. Simulations show that root secondary thickening induces higher anchorage rigidity and increases anchorage strength by 58 %.Conclusions This innovative approach appears promising for describing tree stability and its acclimation to external constraints.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subjectsystème racinaire
dc.subjectarbre forestier
dc.subjectpinus pinaster
dc.subjectancrage racinaire
dc.subjectstabilité de l'arbre
dc.subjectstress
dc.subjectmodèle biomécanique
dc.subjectmodèle 3d
dc.subject.enroot system architecture
dc.subject.ennumerical modelling
dc.subject.enroot anchorage
dc.subject.enroot stress
dc.subject.enfailure patterns
dc.subject.enroot systems
dc.subject.enforest tree
dc.subject.enmaritime pine
dc.subject.enthree dimensional model
dc.title.enWhich root architectural elements contribute the best to anchorage of Pinus species? Insights from in silico experiments
dc.typeArticle de revue
dc.identifier.doi10.1007/s11104-016-2992-0
dc.subject.halSciences du Vivant [q-bio]
bordeaux.journalPlant and Soil
bordeaux.page275–291
bordeaux.volume411
bordeaux.issue1
bordeaux.peerReviewedoui
hal.identifierhal-01837360
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-01837360v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Plant%20and%20Soil&rft.date=2017&rft.volume=411&rft.issue=1&rft.spage=275%E2%80%93291&rft.epage=275%E2%80%93291&rft.eissn=0032-079X&rft.issn=0032-079X&rft.au=YANG,%20Ming&DEFOSSEZ,%20Pauline&DANJON,%20Frederic&DUPONT,%20Sylvain&FOURCAUD,%20Thierry&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée