Agronomic practices for improving gentle remediation of trace element-contaminated soils
KIDD, Petra
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
ALVAREZ-LOPEZ, Vanessa
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
Voir plus >
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
KIDD, Petra
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
ALVAREZ-LOPEZ, Vanessa
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] [CSIC]
PUSCHENREITER, Markus
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
< Réduire
Universität für Bodenkultur Wien = University of Natural Resources and Life Sciences [Vienne, Autriche] [BOKU]
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Phytoremediation. 2015, vol. 17, n° 11, p. 1005-1037
Taylor & Francis
Résumé en anglais
The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For ...Lire la suite >
The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.< Réduire
Mots clés en anglais
CROP ROTATION
ECOSYSTEM SERVICES
FERTILIZATION
HARVEST MANAGEMENT
PHYTOMANAGEMENT
PHYTOREMEDIATION
SOIL CONTAMINATION
Origine
Importé de halUnités de recherche