Phenological match drives pollen-mediated gene flow in a temporally dimorphic tree
Langue
en
Article de revue
Ce document a été publié dans
Plant Biology. 2018, vol. 20, n° 1, p. 93-100
Wiley
Résumé en anglais
Variation in flowering phenology is common in natural populations, and is expected to be, together with inter-mate distance, an important driver of effective pollen dispersal. In populations composed of plants with temporally ...Lire la suite >
Variation in flowering phenology is common in natural populations, and is expected to be, together with inter-mate distance, an important driver of effective pollen dispersal. In populations composed of plants with temporally separated sexual phases (i.e. dichogamous or heterodichogamous populations), pollen-mediated gene flow is assumed to reflect phenological overlap between complementary sexual phases. In this study, we conducted paternity analyses to test this hypothesis in the temporally dimorphic tree Acer opalus. We performed spatially explicit analyses based on categorical and fractional paternity assignment, and included tree size, pair-wise genetic relatedness and morph type as additional predictors. Because differences between morphs in flowering phenology may also influence pollination distances, we modelled separate pollen dispersal kernels for the two morphs. Extended phenological overlap between male and female phases (mainly associated with inter-morph crosses) resulted in higher siring success after accounting for the effects of genetic relatedness, morph type and tree size, while reduced phenological overlap (mainly associated with intra-morph crosses) resulted in longer pollination distances achieved. Siring success also increased in larger trees. Mating patterns could not be predicted by phenology alone. However, as heterogeneity in flowering phenology was the single morph-specific predictor of siring success, it is expected to be key in maintaining the temporal dimorphism in A. opalus, by promoting not only a prevalent pattern of inter-morph mating, but also long-distance pollination resulting from intra-morph mating events.< Réduire
Mots clés
Acer opalus
microsatellites
phenology
Mots clés en anglais
dichogamy
neighbourhood model
separate pollen dispersal kernels
Origine
Importé de halUnités de recherche