Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of Agrostis capillaris L. exposed to Cu
Langue
en
Article de revue
Ce document a été publié dans
Proteomics. 2014, vol. 14, n° 15, p. 1746-1758
Wiley-VCH Verlag
Résumé en anglais
Differential expression of soluble proteins was explored in roots of metallicolous (M) and non-M (NM) plants of Agrostis capillaris L. exposed to increasing Cu to partially identify molecular mechanisms underlying higher ...Lire la suite >
Differential expression of soluble proteins was explored in roots of metallicolous (M) and non-M (NM) plants of Agrostis capillaris L. exposed to increasing Cu to partially identify molecular mechanisms underlying higher Cu tolerance in M plants. Plants were cultivated for 2 months on perlite with a CuSO4 (1–30 μM) spiked-nutrient solution. Soluble proteins extracted by the trichloroacetic acid/acetone procedure were separated with 2DE (linear 4–7 pH gradient). After Coomassie Blue staining and image analysis, 19 proteins differentially expressed were identified using LC-MS/MS and Expressed Sequence Tag (ESTs) databases. At supra-optimal Cu exposure (15–30 μM), glycolysis was likely altered in NM roots with increased production of glycerone-P and methylglyoxal based on overexpression of triosephosphate isomerase and fructose bisphosphate aldolase. Changes in tubulins and higher expressions of 5-methyltetrahydropteroyltriglutamatehomocysteine methyltransferase and S-adenosylmethionine synthase underpinned impacts on the cytoskeleton and stimulation of ethylene metabolism. Increased l-methionine and S-adenosylmethionine amounts may also facilitate production of nicotianamine, which complexes Cu, and of l-cysteine, needed for metallothioneins and GSH. In M roots, the increase of [Cu/Zn] superoxide dismutase suggested a better detoxification of superoxide, when Cu exposure rose. Higher Cu-tolerance of M plants would rather result from simultaneous cooperation of various processes than from a specific mechanism.< Réduire
Mots clés
Cu-tolerance
plant proteomics
superoxide dismutase
Mots clés en anglais
agrostis
Origine
Importé de halUnités de recherche