Optimization of the electrochemical performance of a Ni/Ce0.9Gd0.1O2−δ-impregnated La0.57Sr0.15TiO3 anode in hydrogen
XIA, Tian
Key Laboratory of Functional Inorganic Material Chemistry [KLFIMC]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Voir plus >
Key Laboratory of Functional Inorganic Material Chemistry [KLFIMC]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Langue
en
Article de revue
Ce document a été publié dans
Solid State Sciences. 2014, vol. 35, p. 1-9
Elsevier
Résumé en anglais
A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient ...Lire la suite >
A-site deficient perovskite La0.57Sr0.15TiO3 (LSTO) materials are synthesized by a modified polyacrylamide gel route. X-ray diffraction pattern of LSTO indicates an orthorhombic structure. The thermal expansion coefficient of LSTO is 10.0 × 10−6 K−1 at 600 °C in 5%H2/Ar. LSTO shows an electrical conductivity of 2 S cm−1 at 600 °C in 3%H2O/H2. A new composite material, containing the porous LSTO backbone impregnated with small amounts of Ce0.9Gd0.1O2−δ (CGO) (3.4-8.3 wt.%) and Ni/Cu (2.0-6.3 wt.%), is investigated as an alternative anode for solid oxide fuel cells (SOFCs). Because of the substantial electro-catalytic activity of the fine and well-dispersed Ni particles on the surface of the ceramic framework, the polarization resistance of 6.3%Ni-8.3%CGO-LSTO anode reaches 0.73 Ω cm2 at 800 °C in 3%H2O/H2. In order to further improve the anodic performance, corn starch and carbon black are used as pore-formers to optimize the microstructure of anodes.< Réduire
Mots clés en italien
Strontium titanate
Impregnation
Anode materials
Solid oxide fuel cells
Electrochemical performance
Origine
Importé de halUnités de recherche