Gold nanorods coated with mesoporous silica shell as drug delivery system for remote near infrared light-activated release and potential phototherapy
LIU, Ji
Centre d'Etude et de Recherche sur les Macromolécules [CERM]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Voir plus >
Centre d'Etude et de Recherche sur les Macromolécules [CERM]
Institut de Chimie de la Matière Condensée de Bordeaux [ICMCB]
Langue
en
Article de revue
Ce document a été publié dans
Small. 2015, vol. 11, n° 19, p. 2323-2332
Wiley-VCH Verlag
Résumé en anglais
In this study, we report the synthesis of a nanoscaled drug delivery system, which is composed of a gold nanorod-like core and a mesoporous silica shell (GNR@MSNP) and partially uploaded with phase-changing molecules ...Lire la suite >
In this study, we report the synthesis of a nanoscaled drug delivery system, which is composed of a gold nanorod-like core and a mesoporous silica shell (GNR@MSNP) and partially uploaded with phase-changing molecules (1-tetradecanol, TD, Tm 39 °C) as gatekeepers, as well as its ability to regulate the release of doxorubicin (DOX). Indeed, a nearly zero premature release is evidenced at physiological temperature (37 °C), whereas the DOX release is efficiently achieved at higher temperature not only upon external heating, but also via internal heating generated by the GNR core under near infrared irradiation. When tagged with folate moieties, GNR@MSNPs target specifically to KB cells, which are known to overexpress the folate receptors. Such a precise control over drug release, combining with the photothermal effect of GNR cores, provides promising opportunity for localized synergistic photothermal ablation and chemotherapy. Moreover, the performance in killing the targeted cancer cells is more efficient compared with the single phototherapeutic modality of GNR@MSNPs. This versatile combination of local heating, phototherapeutics, chemotherapeutics and gating components opens up the possibilities for designing multifunctional drug delivery systems.< Réduire
Mots clés en anglais
drug release
gold nanorods
mesoporous silica
near infrared
phase-changing materials
Origine
Importé de halUnités de recherche