Hierarchical self-assembly of nanoparticles for optical metamaterials
GRANA, Eftychia
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
CLOUTET, Eric
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
HADZIIOANNOU, Georges
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
< Réduire
Laboratoire de Chimie des Polymères Organiques [LCPO]
Team 4 LCPO : Polymer Materials for Electronic, Energy, Information and Communication Technologies
Langue
en
Article de revue
Ce document a été publié dans
Materials Horizons. 2016-06-07, vol. 3, n° 6, p. 596-601
the Royal Society of Chemistry
Résumé en anglais
Hierarchical self-assembly arranges nanostructures at different length scales. It gradually becomes an effective method of fabricating artificial metamaterials from composite nanostructures tailored for a particular response. ...Lire la suite >
Hierarchical self-assembly arranges nanostructures at different length scales. It gradually becomes an effective method of fabricating artificial metamaterials from composite nanostructures tailored for a particular response. Hierarchical self-assembly overcomes shortcomings of "top-down" methods by significantly reducing fabrication time and making it possible to form bulk materials. Here we report an application of hierarchical self-assembly of metal nanoparticles for the creation of the first isotropic optical metamaterial with strong artificial magnetism in blue light. We have used colloidal self-assembly to create artificial "nanomolecules" that generate the desired magnetic response and microfluidic self-assembly to produce a bulk metastructure. We demonstrate that the magnetic response of the final material is accurately described by an isotropic magnetic permeability that satisfies the principle of locality. Our approach unlocks the fabrication of large volumes of composite nanomaterials. Moreover, the spatial disorder inherent to this "bottom-up" method holds the key to solving the non-locality problem. The technique can be readily extended to the future generations of low-loss optical metamaterials made of dielectric nano-blocks to bypass the limitations of optical losses associated with plasmonic resonances in noble metals.< Réduire
Project ANR
Initiative d'excellence de l'Université de Bordeaux - ANR-10-IDEX-0003
Origine
Importé de halUnités de recherche